51Nod-1091-线段的重叠

42 篇文章 0 订阅
9 篇文章 0 订阅


基准时间限制:1 秒 空间限制:131072 KB 分值: 5  难度:1级算法题
 收藏
 关注
X轴上有N条线段,每条线段包括1个起点和终点。线段的重叠是这样来算的,[10 20]和[12 25]的重叠部分为[12 20]。
给出N条线段的起点和终点,从中选出2条线段,这两条线段的重叠部分是最长的。输出这个最长的距离。如果没有重叠,输出0。
Input
第1行:线段的数量N(2 <= N <= 50000)。
第2 - N + 1行:每行2个数,线段的起点和终点。(0 <= s , e <= 10^9)
Output
输出最长重复区间的长度。
Input示例
5
1 5
2 4
2 8
3 7
7 9
Output示例
4

51Nod-1091-线段的重叠

思路:将线段a[]按左端点从大到小排序,再将所有线段放入 优先队列Q(线段右端点大的优先级高(先出队列))。

遍历所有线段a[]:首先将已经遍历的线段标记,在判断Q.top()是否已经标记,若已标记则出队列。这样能保证队列中的线段的左端点都比当前线段的左端点小,从而只要找到队列中线段最大的右端点(也就是Q.top())即为当前线段的最大重叠。最后比较各线段的最大重叠即为线段的最大重叠。


#include<iostream>
#include<algorithm>
#include<queue> 
using namespace std;

const int MAX_N=50005;
struct node{
	int id;
	int l;
	int r;
	bool operator<(const node &x){
		return l>x.l;
	}
}a[MAX_N];
int n,ans;
bool book[MAX_N];
bool operator<(const node &x,const node &y){
	return x.r<y.r;
}
priority_queue<node> Q;

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cin>>n;
	for(int i=0;i<n;++i)
	{
		cin>>a[i].l>>a[i].r;
		a[i].id=i;
		Q.push(a[i]);
	}
	sort(a,a+n);
	for(int i=0;i<n-1;++i)
	{
		book[a[i].id]=true;
		while(!Q.empty()&&book[Q.top().id]==true){
			Q.pop();
		}
		if(Q.empty())	break;
		if(Q.top().r>a[i].r)	ans=max(ans,a[i].r-a[i].l);
		else	ans=max(ans,Q.top().r-a[i].l);
	}
	cout<<ans<<endl;
	
	return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值