LangChain v0.2 即将发布

图片

     在2024年1月8日,LangChain发布了(LangChain v0.1.0)[https://blog.langchain.dev/langchain-v0-1-0],是一个里程碑的带来很重磅的LCEL

     LangChain 0.2 计划于 05 月 20 日这一周发布。 消息来源[https://github.com/langchain-ai/langchain/discussions/21437]

LangChain v0.2: A Leap Towards Stability- LangChain Blog[https://blog.langchain.dev/langchain-v02-leap-to-stability/] 

LangChain v0.2:迈向稳定的飞跃)

现将这篇官方博文翻译整理,所提到的升级内容如下所示:

  • langchain 和 langchain-community的分离

    最值得关注的变化之一是 langchain 与 langchain-community的解耦。最后,langchain-community 现在将依赖于 langchain-core 和 langchain,目的是创建一个更强大且独立的包。

  • 更好的版本文档

         把当前文档调整为 v0.1 版本,并开始维护单独的 v0.2 版本。

    文档更加扁平和简单化,主要分为四个部分:教程、操作指南、概念指南和 API 参考。这应该会让我们更容易找到文档,并将提供一份最核心的一成不变的指南,与此同时还将提供一份LangChain版本更新指南:Changes to LangChain[https://python.langchain.com/v0.2/docs/versions/overview]

  • 更成熟可控的Agent框架:LangGraph

         在LangChain的最开始阶段,很难自行定制pre-built Chains和Agents的内部结构,我们去年夏天引入了 LCEL 来解决Chain的问题,从而可以轻松创建任意可组合序列。

         目前,LangChain 中的Agents始终是基于 AgentExecutor,我们向此类添加了越来越多的参数来支持日益先进的代理,但它仍然还是不可组合的(无法很好地使用LCEL) 几个月前推出了一个扩展功能LangGraph[https://blog.langchain.dev/langgraph/],专门用于创建Agentic workloads。将其视为“LCEL for agents”。它在 LCEL 基础上,添加了两个重要组件:轻松定义周期的能力(对于Agent很重要,但对于Chain来说并不需要) 内置记忆组件built-in memory

        在v0.2版本我们依然保留AgentExecutor,但 LangGraph 正在成为构建Agents的推荐方式。我们添加了一个预构建的 LangGraph 对象,该对象相当于 AgentExecutor — 通过在 LangGraph 上构建,更容易自定义和修改,迁移指南 How to migrate from legacy LangChain agents to LangGraph[https://python.langchain.com/v0.2/docs/how_to/migrate_agent]

  • 改进了 LLM 接口标准化,特别是在Tool Calling方面,更好的streaming支持 

             ◉ 标准Chat Model接口:

    我们希望尽可能轻松地在不同的大语言模型(LLMs)之间无缝切换。为了做到这一点,我们标准化Tool Calling支持[https://blog.langchain.dev/tool-calling-with-langchain/] ,并添加了结构化输出(Structuring Output)标准化接口[https://github.com/langchain-ai/langchain/discussions/18154].

            ◉ 异步(Async)支持

    我们改进了对许多核心抽象的异步支持。两个例子: Simplify astream logic in BaseChatModel and BaseLLM[https://github.com/langchain-ai/langchain/pull/19332] Add async aformat_document method[https://github.com/langchain-ai/langchain/pull/20037]

            ◉ 流式(Streaming)支持

    对于 LLM 应用程序至关重要,我们通过添加 Event Streaming API[https://python.langchain.com/docs/expression_language/streaming/?ref=blog.langchain.dev#using-stream-events]. API 改进了流支持。

  • 30+ 新的第三方包的支持

         与生态系统合作伙伴密切合作,为 20 多个 Python 提供商(包括 MongoDB、Mistral 和 Together AI)以及 17 个 JavaScript 提供商(包括 Google VertexAI、Weaviate 和 Cloudflare)添加专用软件包。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值