【论文翻译】A measurement fusion algorithm of sensors angle association for multi-target tracking-第二部分


5. 复杂性分析与SAMPS-AA算法和PHD滤波器的集成

在本节中,SAMPS-AA算法与PHD滤波器的复杂性分析和集成分别在第5.1节和第5.2节中给出。在第5.1节中,我们首先简要描述了根据相应伪代码提出的算法每部分的计算复杂性,然后分析和计算了算法的总体计算复杂性。此外,在第5.2节中,我们展示了将提出的算法与传统滤波器(例如PHD滤波器)的集成,其中伪代码被用来提高提出的算法的整体清晰度和适用性。

5.1. 复杂性分析

5.1.1. 传感器之间测量范围的复杂性分析

在本节中,我们分析了第3.1节中传感器之间测量范围的计算复杂性。该部分的伪代码如表1所示。

在表1中,跟踪持续时间通常设置为 K = 100 K = 100 K=100秒,在本工作中传感器数量设置为 N = 3 N = 3 N=3。因此,根据表1中的伪代码,第一部分的计算复杂性计算为 O ( K × N 2 ) = O ( 100 × 3 2 ) = O ( 900 ) O(K \times N^2) = O(100 \times 3^2) = O(900) O(K×N2)=O(100×32)=O(900)。换句话说,一旦跟踪持续时间 K K K 和传感器数量 N N N 确定,计算复杂性保持不变,即 O ( K × N 2 ) O(K \times N^2) O(K×N2)
在这里插入图片描述

5.1.2. 传感器与测量之间测量范围的复杂性分析

在本节中,我们分析了第3.2节中传感器与测量之间测量范围的计算复杂性。该部分的伪代码如表2所示。

与第3.1节的前一步骤相比,第3.2节的步骤主要涉及判断操作,计算复杂性没有增加。因此,根据表2中的伪代码,这一步骤的计算复杂性与第3.1节的步骤相同,即 O ( K × N 2 ) O(K \times N^2) O(K×N2)
在这里插入图片描述

5.1.3. 基于统计的筛选和角度关联的复杂性分析

在本节中,我们分析了第4.1节和第4.2节中基于统计的筛选和角度关联的计算复杂性。该部分的伪代码如表3所示。

在表3中,主要操作仍然是判断,因此这部分的计算复杂性保持不变,即 O ( K × N 2 ) O(K \times N^2) O(K×N2)
在这里插入图片描述

5.1.4. 测量排除的复杂性分析

在本节中,我们分析了第4.3节中测量排除的计算复杂性。该部分的伪代码如表4所示。

在表4中,内部计算不再涉及除两个循环之外的其他循环,因此这一部分的计算复杂性保持与之前部分一致,即 O ( K × N 2 ) O(K \times N^2) O(K×N2)

通过上述分析,可以计算出提出的SAMPS-AA算法的总体计算复杂性为 O ( K × N 2 ) + O ( K × N 2 ) + O ( K × N 2 ) + O ( K × N 2 ) = 4 O ( K × N 2 ) O(K \times N^2) + O(K \times N^2) + O(K \times N^2) + O(K \times N^2) = 4O(K \times N^2) O(K×N2)+O(K×N2)+O(K×N2)+O(K×N2)=4O(K×N2),因此,最终的计算复杂性为 O ( K × N 2 ) O(K \times N^2) O(K×N2)。因此,随着跟踪持续时间和传感器数量的增加,提出的SAMPS-AA算法的计算复杂性会迅速增加。为此,为了平衡计算复杂性和相关性跟踪精度,我们采用了构建统计量和PHD滤波器的方法来分别排除错误的相关组合和跟踪多个目标。与提出的算法排除错误相关组合相比,尽管PDA和JPDA算法可以进一步提高相关性的精度,但在PDA和JPDA算法中需要计算多传感器多目标跟踪的互联概率,这将导致融合和跟踪系统的计算负担增加。此外,与PDA和JPDA算法相比,PHD滤波器和其他基于随机有限集(RFS)的滤波器可以克服高计算复杂性的问题,具有更好的跟踪性能。在下一节中,我们将提供SAMPS-AA算法与PHD滤波器的集成。

在这里插入图片描述

5.2. SAMPS-AA算法与PHD滤波器的集成

在本节中,为了说明提出的SAMPS-AA算法的清晰性和适用性,我们考虑将SAMPS-AA算法与PHD滤波器集成,相关的伪代码如表5所示,主要介绍滤波器的预测和更新部分。

值得注意的是,在表5的输入部分, { w γ , k ( i ) , m γ , k ( i ) , P γ , k ( i ) } i = 1 J γ , k \{w^{(i)}_{\gamma,k}, m^{(i)}_{\gamma,k}, P^{(i)}_{\gamma,k}\}_{i=1}^{J_{\gamma,k}} {wγ,k(i),mγ,k(i),Pγ,k(i)}i=1Jγ,k 是给定的模型参数,这些参数决定了出生强度的形状,其中权重 w k − 1 ( i ) w^{(i)}_{k-1} wk1(i) 给出了从均值 m γ , k ( i ) m^{(i)}_{\gamma,k} mγ,k(i) 起源的新目标的期望数量,而协方差矩阵 P γ , k ( i ) P^{(i)}_{\gamma,k} Pγ,k(i) 决定了出生强度在均值 m γ , k ( i ) m^{(i)}_{\gamma,k} mγ,k(i) 附近的扩展程度。此外, F k − 1 F_{k-1} Fk1 是状态转移矩阵, H k H_k Hk 是观测矩阵, R k R_k Rk 是观测噪声协方差, S k ( j ) S_k^{(j)} Sk(j) 是创新协方差,而 K k ( j ) K_k^{(j)} Kk(j) 是卡尔曼增益。

在这里插入图片描述

6. 数值实验

在本节中,我们展示了模拟结果,以验证提出的SAMPS-AA算法(在第3和第4节中介绍)的性能,在三种不同的跟踪场景中进行测试。值得注意的是,提出的算法的主要目的是展示SAMPS的有效测量融合,因此,我们设计了对比实验,以突出该算法的优势。在模拟中,我们选择的对比算法是简化角度关联(SAA)算法,该算法目前是主流的测量融合算法,只包含第3.1.2节中的步骤和场景1及场景2,而不考虑第3.2.2节中的测量遗漏。

在处理了SAMPS-AA和SAA算法之后,剩余的测量与多目标跟踪算法中使用的常见测量相同。至于跟踪滤波器,我们选择了基于随机有限集(RFS)的概率密度假设(PHD)滤波器,仅旨在证明我们算法的有效性。PHD滤波器是一种基于贝叶斯滤波框架的多目标跟踪近似解,其核心是将每个跟踪时刻的所有目标视为一个整体,并使用所有传感器的测量数据来更新目标状态,从而避免数据关联。需要注意的是,PHD滤波器传递的是多个目标的后验概率密度的一阶统计矩,即后验强度函数,这可以有效减少传递多目标概率密度的运算量,同时通过单目标状态空间模拟多目标状态空间。也就是说,一个多目标跟踪问题可以被分解为多个单目标跟踪问题,一旦每个单目标问题得到解决,原始问题也就解决了。换句话说,PHD滤波器是一种递归跟踪算法。性能评估指标包括最佳子模式分配(OSPA)距离、基数的均值等。

在下面的三个部分中,我们考虑了一个三维场景,其中在观测区域 [ − 3500   m , 3500   m ] × [ − 3500   m , 3500   m ] [-3500\,\text{m}, 3500\,\text{m}] \times [-3500\,\text{m}, 3500\,\text{m}] [3500m,3500m]×[3500m,3500m] 及高度为500m的杂波中检测到的目标数量未知且随时间变化。杂波测量在观测空间内均匀分布,并且为泊松RFS,其强度表示为

κ k ( z ) = λ c U ( z ) V (54) \kappa_k (z) = \lambda_c \frac{U(z)}{V} \tag{54} κk(z)=λcVU(z)(54)

其中 U ( ⋅ ) U(\cdot) U() 表示观测区域内的均匀密度, V V V V = ∫ U ( z )   d z V = \int U(z) \, dz V=U(z)dz 计算得到, λ c \lambda_c λc 是泊松分布的均值,模拟中设定为每扫描 λ c = 30 \lambda_c = 30 λc=30。PHD滤波器的参数列在表6中。
在这里插入图片描述

在所有三个场景中设置了三台传感器,如图16所示,其中S1和S2是被动传感器,位置分别为 ( 0 , − 5   km , 0 ) (0, -5\,\text{km}, 0) (0,5km,0) ( 5   km , 0 , 0 ) (5\,\text{km}, 0, 0) (5km,0,0),而S3是主动传感器,位置为 ( 0 , 5   km , 0 ) (0, 5\,\text{km}, 0) (0,5km,0)。三台传感器的检测范围均为15km。目标在时间 k k k 的测量向量包括其方位角、俯仰角和三维位置向量,即 z k = [ α k , β k , x k , y k , z k ] T z_k = [\alpha_k, \beta_k, x_k, y_k, z_k]^T zk=[αk,βk,xk,yk,zk]T
在这里插入图片描述

6.1. 场景1:CV模型

6.1.1. 场景设置

目标在时间 k k k 的状态向量由其三维位置和速度表示,即 x k = [ x k , v x , k , y k , v y , k , z k , v z , k ] T x_k = [x_k, v_{x,k}, y_k, v_{y,k}, z_k, v_{z,k}]^T xk=[xk,vx,k,yk,vy,k,zk,vz,k]T。目标的初始状态、出生时间和死亡时间列在表7中。目标的高度固定,因此目标的真实位置仅在二维 x x x y y y 平面上,如图17所示,其中“◯” 和 “△” 分别表示每条轨迹的开始和结束。
在这里插入图片描述

在这里插入图片描述

6.1.2. 模拟结果

在测量误差不变的情况下,我们分别使用SAMPS-AA算法和SAA算法的测量数据运行了100次蒙特卡洛(MC)试验。结果如图18所示,其中图18 (a) 中绘制了MC基数的均值,图18 (b)、© 和 (d) 分别绘制了MC平均OSPA(设定阈值 c = 100 c = 100 c=100 m,阶数 p = 1 p = 1 p=1)距离、OSPA位置误差和OSPA基数误差。

从图18 (a) 和 (d) 可以明显看出,与真实基数(即目标数量)相比,两种测量类型的均值基数总体上接近真实值,而SAMPS-AA测量的结果更为接近,这表明PHD滤波器在使用SAMPS-AA测量时对目标数量的估计具有更好的准确性。根据图18 (b),OSPA结果表明,使用SAMPS-AA测量的PHD滤波器优于使用SAA测量的版本,其中图18 © 显示SAMPS-AA测量的位置信息误差远小于SAA测量在任何采样时间的误差。然而,从图18 (b)–(d) 可以看出,在目标出生和死亡时,OSPA误差可能会突然增加。这可以通过OSPA距离的公式解释,即

d p , l o c ( c ) ( X , Y ) = ( 1 max ⁡ ( m , n ) dist E ) 1 / p (55) d^{(c)}_{p,loc}(X, Y) =\left( \frac{1}{\max \left({m},{n} \right)} \text{dist}_E \right)^{1/p} \tag{55} dp,loc(c)(X,Y)=(max(m,n)1distE)1/p(55)

其中 dist E \text{dist}_E distE 是集合 X = { x 1 , x 2 , … , x m } X = \{x_1, x_2, \ldots, x_m\} X={x1,x2,,xm} Y = { y 1 , y 2 , … , y n } Y = \{y_1, y_2, \ldots, y_n\} Y={y1,y2,,yn} 的最小欧几里得距离。当目标出生时,由于 max ⁡ ( m , n ) \max(m, n) max(m,n) 的增加,OSPA位置误差下降;当目标死亡时,由于 dist E \text{dist}_E distE 的减少,OSPA位置误差也下降。

然而,总体而言,在多目标CV模型中,使用SAMPS-AA测量的PHD滤波器的跟踪结果优于使用SAA测量的版本。这是因为提出的SAMPS-AA算法可以充分结合这两种类型传感器的优势,即单个主动传感器和多个被动传感器,并有效排除尽可能多的错误关联组,从而提高跟踪准确性。
在这里插入图片描述

6.2. 场景2:CT模型

6.2.1. 场景设置

目标在时间 k k k 的状态向量由其三维位置、速度和转向速率 ω k \omega_k ωk 表示,即 x k = [ x k , v x , k , y k , v y , k , z k , v z , k , ω k ] T x_k = [x_k, v_{x,k}, y_k, v_{y,k}, z_k, v_{z,k}, \omega_k]^T xk=[xk,vx,k,yk,vy,k,zk,vz,k,ωk]T。目标的初始状态、出生时间和死亡时间列在表8中。目标的真实轨迹如图19所示,其中“◯” 和 “△” 分别表示每条轨迹的开始和结束。
在这里插入图片描述
在这里插入图片描述

6.2.2. 模拟结果

我们再次使用SAMPS-AA测量和SAA测量分别进行了100次蒙特卡洛(MC)试验。结果如图20 (a)–(d) 所示,其中图20 (a) 为MC基数的均值,图20 (b) 为MC平均OSPA(设定阈值 c = 100 c = 100 c=100 m,阶数 p = 1 p = 1 p=1)距离,图20 © 为OSPA位置误差,图20 (d) 为OSPA基数误差。

从图20 (a) 和 (d) 可以看出,与真实基数相比,SAA测量得到的均值基数不如SAMPS-AA测量准确,这表明使用SAMPS-AA测量的PHD滤波器对目标数量的估计更为准确。根据图20 (b),OSPA结果表明,使用SAMPS-AA测量的PHD滤波器的跟踪误差远低于使用SAA测量的版本,其中图20 © 显示,SAMPS-AA测量的位置信息误差在整个跟踪过程中甚至比SAA测量的误差更小。类似地,曲线的突然变化原因与第6.1.2节中提到的情况相同。

因此,在多目标CV和CT模型中,使用SAMPS-AA测量的PHD滤波器显著优于使用SAA测量的版本。实验结果表明,提出的SAMPS-AA算法可以充分结合这两种类型传感器的优势,即单个主动传感器和多个被动传感器,有效排除尽可能多的错误关联组,从而显著提高跟踪准确性。这表明,提出的算法在CV和CT场景中的多目标跟踪中具有很强的适用性。
在这里插入图片描述

6.3. 场景3:机动模型

6.3.1. 场景设置

我们考虑一个更复杂的场景,其中目标的运动模型随时间变化,可以视为CV模型和CT模型的结合。目标在时间 k k k 的状态向量与CT模型中的形式相同,即 x k = [ x k , v x , k , y k , v y , k , z k , v z , k , ω k ] T x_k = [x_k, v_{x,k}, y_k, v_{y,k}, z_k, v_{z,k}, \omega_k]^T xk=[xk,vx,k,yk,vy,k,zk,vz,k,ωk]T,但与场景2中的不同的是, ω k \omega_k ωk 不再是常数。具体来说,从初始时间到时间25, ω k = π / 60 \omega_k = \pi/60 ωk=π/60;从时间26到50, ω k = 0 \omega_k = 0 ωk=0;从时间51到跟踪结束, ω k = − π / 90 \omega_k = -\pi/90 ωk=π/90。目标的初始状态、出生时间和死亡时间列在表9中。目标的真实轨迹如图21所示,其中“◯” 和 “△” 分别表示每条轨迹的开始和结束。
在这里插入图片描述

6.3.2. 模拟结果

我们再次使用两种类型的测量数据进行了100次蒙特卡洛(MC)试验。在本节中,为了展示提出的SAMPS-AA算法在复杂传感器场景下的有效性,将分别在单个主动传感器和单个被动传感器(两个传感器)、单个主动传感器和三个被动传感器(四个传感器)、以及单个主动传感器和六个被动传感器(七个传感器)的场景下进行对比实验,分别对应图22中的SAMPS-AA(2个传感器)、SAMPS-AA(4个传感器)和SAMPS-AA(7个传感器)。图22 (a) 显示了MC基数的均值,而图22 (b)–(d) 分别显示了MC平均OSPA(设定阈值 c = 100 c = 100 c=100 m,阶数 p = 1 p = 1 p=1)距离、OSPA位置误差和OSPA基数误差。

首先,从图22 (a) 和 (d) 可以看出,使用SAMPS-AA测量和SAA测量的基数均值都接近真实基数,但SAMPS-AA测量的目标数量估计更接近实际目标数量。根据图22 (b),平均OSPA距离显示,使用SAMPS-AA测量的PHD滤波器在不同复杂传感器场景下具有明显的跟踪精度优势,相比之下,SAA测量版本的跟踪误差较大。同时,随着传感器数量的增加,跟踪误差会持续下降。此外,PHD滤波器使用SAMPS-AA测量的位置信息误差比SAA测量的更低,随着传感器数量的增加,跟踪精度显著提高,如图22 © 所示。显然,使用SAMPS-AA测量的PHD滤波器在多目标机动模型中在位置和目标数量估计上具有显著优势。这表明,提出的算法在不同复杂传感器场景中的多目标跟踪具有很强的适用性。

其次,为了评估提出的SAMPS-AA算法在不同检测概率下的有效性(设定为0.99、0.95、0.9、0.85和0.8),采用了上述复杂传感器场景。图23展示了不同检测概率和传感器场景下算法的平均OSPA距离。可以观察到,SAA算法的状态估计精度随着检测概率的降低而迅速下降,而SAMPS-AA算法在 p D < 0.9 p_D < 0.9 pD<0.9 时呈现出类似的趋势。然而,检测概率的变化对SAMPS-AA算法的影响微乎其微,我们可以发现,提出的算法在 p D > 0.9 p_D > 0.9 pD>0.9 时表现良好。特别值得注意的是,在七个传感器的场景下,跟踪结果对检测概率波动的敏感性较低,而与两台和四台传感器的场景相比更具稳定性。这表明,提出的SAMPS-AA算法在复杂传感器场景下具有强大的鲁棒性和适用性。

最后,为了验证提出的SAMPS-AA算法在高杂波跟踪环境下的适应性,采用了如图21所示的跟踪场景,并在不同的杂波率下(设定为30、40、50、60、70、80和90)进行了实验。图24 (a) 和 (b) 分别显示了平均OSPA距离和运行时间。可以明显看出,随着杂波率 λ c \lambda_c λc 的增加,OSPA距离和运行时间均有所增加。值得注意的是,当 λ c > 60 \lambda_c > 60 λc>60 时,OSPA距离和运行时间急剧增加。因此, λ c = 60 \lambda_c = 60 λc=60 是一个阈值,一旦杂波率超过这一值,提出的SAMPS-AA算法的跟踪准确性和实时性能会因杂波数量的快速增加而显著恶化。这意味着,提出的SAMPS-AA算法在更高杂波的跟踪环境中具有强大的鲁棒性和适用性。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7. 结论

本文提出了一种基于角度关联的SAMPS测量融合算法(称为SAMPS-AA算法),旨在解决由于测量维度差异而导致主动传感器和被动传感器测量无法有效融合的问题,并且具有较低的计算复杂度。我们通过选择两种传感器共同拥有的角度测量来融合测量,然后利用来自主动传感器的位置信息等手段排除错误的融合结果。在角度测量融合过程中,通过建立几何预处理模型和统计方法来降低计算复杂度,同时在排除过程中通过最小二乘法和位置测量来提高跟踪精度。

通过在三种场景下进行模拟实验,结果表明,使用提出的算法获得的测量结果相比于单个主动传感器的测量,在多目标跟踪中无论目标如何移动都显示出明显的改进。这表明,所提出的算法在多源传感器多目标跟踪领域具有普遍的适用性。

从概念上讲,所提出的SAMPS算法也可以扩展到多主动传感器和多被动传感器的场景。然而,这仅在计算复杂度可控的情况下才可行。换句话说,实际应用中的关键挑战在于运行时间,这是我们未来主要的研究方向。此外,拍卖算法在分布式传感器中的许多优点也是我们未来重点突破的研究方向。法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值