分类器的评价指标

分类器的评价指标主要作用是根据应用场景的不同,来评价不同的分类器性能。比如,癌症诊断中,宁可错判一个未患病患者,也不能遗漏一个真实癌症患者;食品检测中却不同,对于不合格的食品,尽可能的一个不漏。而对于一般的图像分类,就需要总和考虑,哪一方面判断错了都是不好的。

分类矩阵:
enter description here

分类目标只有两类,计为正例(positive)和负(negtive):

  • True positives(TP): 被正确地划分为正例的个数,即实际 为正例且被分类器划分为正例的实例数(样本数);
  • False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;
  • False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;
  • True negatives(TN): 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。

  1. 准确率Accuracy、错误率Error rate
    准确率:分类正确/总数=(TP+TN)/ Total
    错误率:分类错误的比例=1-Accuracy

  2. 精准率Precision、召回率recall、F指标F-Measure

  • 精准率:Precision=TP /(TP+FP)
    又称查准率,即对于我们的分类,有多少正品是被真正分类的。例子:食品检测中,我们的关注点其实在于不合格食品,因此,我们很在乎,被判别合格的食品中是否存在不合格食品,如果精准率太低是非常危险的,关系到人民的生命。

  • 召回率:Recall=TP/(TP+FN)=TP/P
    又称查全率,这个意思更好懂一点,即宁可错查一个错例,不能放过一个正例。
    例子:医院癌症识别,我们希望尽可能的把所有的患者都能诊断出来,即便存在把实际未患病的也识别为患者的情况。

  • F指标:
    为了总和考虑精准率和召回率,使用的F指标
    enter description here
    B是关与召回的权重,大于1说明更看重召回的影响,小于1则更看重精度,等于1相当于两者的调和平均。
    F1指标(F1-Measure):
    enter description here

  1. ROC曲线(Receiver Operating Characteristic,ROC)、AUC(Area Under Curve)、EER(Equal Error Rate)
  • ROC曲线:
    横坐标:将正例分对
    True Positive Rate ( TPR ) = TP / [ TP + FN]
    等同于召回率,即尽可能正确识别,因为错误识别代价太大,如癌症,这里表示安全性。
    纵坐标:将错例分错
    越高代表我们允许将错例分错,包容性更强。比如垃圾邮件过滤,我们允许部分垃圾邮件错误识别,从而防止可能存在重要文件被判别为垃圾邮件,导致损失,这样影响用户体验。
    False Positive Rate( FPR ) = FP / [ FP + TN]

如下图所示:
enter description here

  • AUC
    围住的面积,越大,分类器效果越好。即在保持分队的情况下,分错的概率最低。

  • EER
    即安全性和方便性达到均衡
    enter description here

参考:
https://zhuanlan.zhihu.com/p/33273532
https://www.zhihu.com/question/37436914

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值