分类器的评价指标

分类器的评价指标主要作用是根据应用场景的不同,来评价不同的分类器性能。比如,癌症诊断中,宁可错判一个未患病患者,也不能遗漏一个真实癌症患者;食品检测中却不同,对于不合格的食品,尽可能的一个不漏。而对于一般的图像分类,就需要总和考虑,哪一方面判断错了都是不好的。 分类矩阵: 分类目标只有两类,...

2018-09-28 14:22:56

阅读数 254

评论数 0

Seq2Seq模型

seq2seq模型即通过序列预测序列,但是相对于传统单一深度学习系统,如CNN或者RNN,这些模型的输入输出都是固定的长度,比如图像识别中图像的大小。但是对于机器翻译或者语音对话而言,由于输入的序列文本大小可变,预测输出也是可变的,因而这种单一的格式很难适应。因此提出了seq2seq模型,这是...

2018-09-28 14:22:33

阅读数 140

评论数 0

tensorflow-seq2seq知识点梳理

title: tensorflow-seq2seq知识点梳理 tags: 新建,模板,小书匠 grammar_cjkRuby: true 接触python已有两年之久,零散地使用tensorflow也将近一年。但是是指今日,如果让我重新建立一个项目,我仍是无能为力。有时候,我会有一种...

2018-09-27 17:35:15

阅读数 68

评论数 0

语音合成系统WORLD-原理和简单使用

最近在做语音合成相关的一个东西,其中后期需要做一个声音转换系统,但是真正的声音转换系统还挺复杂,因为我们的目的是希望能够将一个声音完全地变为另一个已知的 WORLD通过获取三个语音信号相关的参数信息来合成原始语音,这三个参数信息分别是:基频F0、频谱包络、非周期信号参数(英文分别为:Fu...

2018-09-25 11:25:15

阅读数 1586

评论数 0

语音合成综述

title: 语音合成综述 tags: 新建,模板,小书匠 grammar_cjkRuby: true 语音相关基础知识点: 时域信号:一维原始信号 傅里叶变换:得到频域特征 短时傅里叶变换:傅里叶变换得到了频域信号,但是丢失了时域信号,所欲通过STFT得到时频信号 梅尔...

2018-09-25 10:01:04

阅读数 1761

评论数 0

深度学习优化器Optimizer总结-tensorflow-1原理篇

单纯以算法为论,深度学习从业者的算法能力可能并不需要太大,因为很多时候,只需要构建合理的框架,直接使用框架是不需要太理解其中的算法的。但是我们还是需要知道其中的很多原理,以便增加自身的知识强度,而优化器可能正是深度学习的算法核心 本文基本完全参考一下连接: 原理简化讲解篇:http...

2018-09-19 20:19:17

阅读数 419

评论数 0

见多识广——再谈见识

title: 见多识广——再谈见识 tags: 新建,模板,小书匠 grammar_cjkRuby: true 一个人的一生时间极其短暂,如果仅仅凭借单纯的努力,即便劳苦一生,你可能连上一阶级的起跑点都达不到。有时候,如果没有一点见识,你做的许多选择都是错的,盲目的努力都是无用之功。...

2018-09-19 18:52:14

阅读数 111

评论数 0

linux下非root用户安装软件-pyaudio、sounddevice

title: linux下非root用户安装软件-pyaudio、sounddevice tags: 新建,模板,小书匠 grammar_cjkRuby: true 最近在配置一个深度学习框架,由于服务器是公用的,导致并没有root权限,所有对于许多的软件安装,都无法直接使用apt-...

2018-09-19 18:51:39

阅读数 279

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭