大数据玩的是什么,趋势,故障,寿命?
物联网拉动的是终端厂商的销量,作为终端设备生产商(OEM),不管是汽车、手机、家电行业,最有理由推动物联网的普及,但是作为传统行业,玩“网”并不擅长,这也就是为什么需要IT厂商的介入,因为数据容易采集,但是产生价值很难。
想起前一家公司做过的电动车监控项目,将BJ市所有电动车的数据采集回来后,面对后台数据库服务器不断暴增的容量,处理的速度逐渐赶不上新增的数据,并且处理完的结果还谈不上增值,不得已只能能删掉一个月前的备份数据。大数据的采集、存储、处理都是需要花钱的,在没有盈利能力的情况下,目前IT厂商的数据还是不要往大了玩的好。
大数据区别于传统抽样方法的特征之一就是大/全样本(4V之中的Volume),如果能以极低的成本收集和存储数据(相信这是一个趋势),或者说对于那些能够不计成本的企业/团体而言,大数据能玩什么呢?
预测未来!
科学史上,牛顿三大定律出来后,科学界漫延这一种人类无所不知的骄傲,以为一切都在掌握。量子理论诞生后,我们倾向于在所有推测结论之前加上一个概率,但是仍然不放弃寻找偶然后面的必然规律。计算机和互联网技术把我们带到了一个可以研究大样本的时代,研究的方式已经发生了根本的转变,不是通过观察个体来总结规律进而推测整体趋势,而是通过收集整体数据来预测个体变化的概率。但是,一切真的都可以预测吗?
还是回到电动车的监控项目,由于电池技术的不成熟,发生过几次电池爆炸的事故,因此,电动车监控的重点之一就是电池故障和寿命的预测,通过持续观察电池的充放电过程,包括温度和电压,是可以从大量电池的数据中建立特定的统计模型,进而可以对电池的可靠性、故障模式做出更精确的描述,例如 SoC,SoH,SoF。理想一点来说,如果做出的预测足够准确,从而避免一定事故,对车辆监控的数据完全是可以卖给保险公司、电动车/电池的生产厂家,车辆运维的公司也可以基于车辆寿命进行适当淘汰,因为它们关心车辆的健康趋势,故障条件和使用寿命。
如果检测的不是电池,是通过手环/智能手表采集的人的体温、心率、血压等数据,那边人的疾病和寿命甚至都是可以预测的,问题是,我们会甘心被贴上这样的标签吗?如果知道你将有80%的概率在明年5月份得一次感冒,公司会对你的工作做出额外安排吗?如果你家老人60岁后有90%的概率得一场重病,保险公司还会继续提供医疗保险吗?
随着对个人隐私的重视,大家也逐渐意识到那些掌握数据的公司/团体,在如何使用数据上也应负有一定的责任,或者是有限责任,对商业模式的设计,不可避免的也要考虑如何去分担这部分责任。
还是回到车上,最近车联网技术在租车公司的引导下,产生一种新的个人租车服务。有私家车的个人在租车网站上注册,并在车上安装Telematics监控设备后,就可以将车在网上挂牌出租了。租车公司的业务模式就是收集车辆数据(实时、在线),发布租车交易信息(基于LBS),并管理车辆状态,除向出租人根据车辆使用情况返还部分租金外,还可以提供车辆维护信息,甚至分担一部分车辆维护费用(作为折旧费)。租车人能享受到的便利就是可以就近租车和扩大车辆类型的选择范围。这样,三方在责任和风险上各有分担,也各有收益。
貌似 “哈哈拼车” , "易到用车"也可以借鉴这个模式,从车联网和汽车大数据挖掘中受益。
车辆作为个人资产,产生的数据自然也是个人隐私的一部分。租车公司可以利用车辆数据开发租车业务,但从法理上并不具备对数据的所有权,个人如果向租车公司支付一定的费用(当然也可以放弃),能在车辆数据中挖掘什么价值呢?