大数据毕业设计hadoop+spark+hive知识图谱股票分析预测系统 股票推荐系统 股票数据分析可视化大屏 股票基金爬虫 股票基金大数据 机器学习 深度学习 人工智能 计算机毕业设计

本文探讨了如何利用Hadoop和Spark构建高效股票分析与推荐系统,通过大数据处理、机器学习和深度学习技术,提升金融市场的效率、准确性,降低投资风险,以及增强金融机构的竞争力。研究内容包括数据采集、系统设计、功能实现和金融科技创新的推动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   

基于hadoop+spark的股票分析与推荐系统的设计与实现

姓名

学院

数学与大数据学院

专业

班级

学号

选题性质

应用研究

指导教师姓名

韦萍萍

职称

副教授

预计字数

填自己要写的论文总字数

选题的原由:

1)说明本选题的理论、实际意义

理论意义

  • 推动大数据技术在金融领域的应用:随着大数据技术的发展,基于Hadoop和Spark的大数据平台在各个行业得到了广泛应用。然而,在金融领域,特别是在股票市场,这些技术的应用还相对较少[1]。通过本课题的研究,可以进一步推动大数据技术在金融领域的应用,提高股票市场的效率和准确性。
  • 构建高效的股票分析与推荐系统:传统的股票分析方法主要依赖于人工分析和专家的经验。这种方法在处理大量数据时往往效率低下,且容易受到人为因素的影响。通过本课题的研究,可以构建高效的股票分析与推荐系统,提高股票分析的效率和准确性,同时降低人为因素的影响[2]。
  • 扩展机器学习和深度学习在金融领域的应用:机器学习和深度学习是当前人工智能领域的重要分支,其在金融领域的应用也得到了广泛的关注[3]。本课题将探讨如何利用机器学习和深度学习技术对股票数据进行挖掘和分析,进一步扩展这些技术在金融领域的应用。
  • 促进混合计算模型的研究与发展:本课题将研究如何将Hadoop和Spark两种不同的计算模型进行有效的结合,以实现优势互补。这将为混合计算模型在金融领域的应用提供新的思路和方法,同时也将促进混合计算模型的研究与发展[4]。
  • 提升金融风控能力:通过对股票数据的深度分析和挖掘,本课题的研究成果将有助于投资者更好地把握市场趋势,预测股票价格波动,从而提升金融风控能力[5]。

实际意义

  • 提高股票市场的效率和准确性:通过使用基于Hadoop和Spark的大数据平台,可以更高效地处理和分析大量股票数据,从而提高股票市场的效率和准确性。这对于投资者和金融机构来说具有重要的实际价值[6]。
  • 降低投资风险:通过本课题的研究,投资者可以更准确地预测股票价格的波动,从而降低投资风险。这对于投资者来说具有重要的实际意义,可以帮助他们做出更明智的投资决策。
  • 提升金融业务的智能化水平:本课题将探讨如何利用机器学习和深度学习技术对股票数据进行挖掘和分析,这将有助于提升金融业务的智能化水平。金融机构可以利用这些技术改进现有的业务模式,提高服务质量和客户满意度。
  • 增强金融行业的竞争力:通过本课题的研究,金融机构可以开发出更高效的股票分析与推荐系统,从而增强其在金融行业的竞争力。这对于金融机构来说具有重要的实际意义,可以帮助它们在激烈的市场竞争中获得更大的优势。
  • 推动金融科技创新的发展:本课题将探讨如何将Hadoop和Spark两种不同的计算模型进行有效的结合,以实现优势互补。这将为金融科技创新提供新的思路和方法,同时也将促进金融科技创新的发展。

2)综述国内外有关本选题的研究动态和自己的见解

国内

中国科学技术大学的学者们利用Hadoop和Spark构建了一个股票数据分析与推荐系统。他们采用了基于时间序列的股票数据分析方法,通过分析历史股价数据,预测未来股票价格的波动趋势,并利用推荐算法为投资者提供个性化的股票投资建议[7]。该系统的性能得到了显著提升,可以处理大规模的股票数据,并且能够实时更新推荐结果。

国外

     微软亚洲研究院的研究人员利用Hadoop和Spark构建了一个股票市场趋势预测系统。他们采用了基于机器学习的股票预测模型,通过对历史股价数据进行特征提取和模型训练,预测未来股票价格的波动趋势。同时,他们还利用Spark的分布式计算能力,对预测模型进行并行化处理,提高了系统的性能和效率[8]。

另外,国外的一些大型互联网公司,如Google、Facebook等,也利用Hadoop和Spark构建了类似的大数据分析和推荐系统。这些系统可以处理海量的用户行为数据和社交媒体信息,并通过机器学习和深度学习技术进行数据挖掘和分析,从而为广告商和投资者提供更精确的推荐和预测服务[9]。

自己的见解

首先,随着大数据时代的到来,股票市场也面临着越来越多的数据挑战。传统的股票分析方法往往依赖于人工分析和专家的经验,已经无法满足投资者和金融机构的需求。因此,利用大数据技术对股票数据进行挖掘和分析,提高股票市场的效率和准确性,具有重要的实际意义。

其次,Hadoop和Spark作为当前大数据领域的两个重要技术,具有各自的优势和特点。Hadoop具有强大的分布式存储和处理能力,可以处理大规模的数据集;而Spark则具有高效的内存存储和计算能力,可以加速数据分析和机器学习算法的执行。将两者结合起来,可以充分发挥各自的优势,提高股票数据分析的效率和准确性[10]。

再次,股票分析与推荐系统是大数据应用的一个重要领域。通过分析历史股价数据和市场趋势,可以预测未来股票价格的波动趋势,为投资者提供个性化的股票投资建议。同时,结合推荐算法和机器学习技术,还可以为金融机构提供精准的客户服务和风险管理方案。这有助于提升金融业务的智能化水平,增强金融行业的竞争力[11]。

最后,随着人工智能和机器学习技术的不断发展,越来越多的学者和专家开始关注股票市场的数据挖掘和分析。通过引入先进的算法和模型,可以更好地揭示股票市场的规律和趋势,为投资者和金融机构提供更准确的决策支持。同时,随着金融市场的不断开放和金融科技创新的发展,大数据技术在金融领域的应用也将得到更广泛的推广和应用。

综上所述,《基于Hadoop+Spark的股票分析与推荐系统的设计与实现》这一选题具有重要的理论意义和实践价值。通过该领域的研究和应用,可以推动大数据技术在金融领域的应用和发展,提高股票市场的效率和准确性,降低投资风险,提升金融业务的智能化水平,增强金融行业的竞争力。同时,也有助于拓展机器学习和深度学习技术在金融领域的应用范围,推动金融科技创新的发展。

主要内容:

1、数据采集:收集股票市场的历史数据和实时数据,包括股票价格、成交量、财务指标等。

2、门户系统:首页股票信息展示;股票推荐(根据协同过滤基于用户物品SVD神经网络MLP模型);股票K线预测(CNN卷积神经预测 );股票信息详情(股票代码,涨跌幅度,成交量,成交额,换手率,股票市值); 支付宝购买股票;订单管理;股票信息评论(lstm情感分析模型)。

3、后台管理系统:个人信息管理;系统管理;用户管理;股票信息管理;评论信息管理;知识图谱。

研究方法:

1.采集雪球网约50万股票数据存入.csv文件;

2.使用pandas+numpy或hadoop+mapreduce对mysql中的数据进行数据清洗并转存新的.csv文件,将文件上传到hdfs;

3.使用hive建表建库导入hdfs中的.csv数据集;

4.一半指标使用hive_sql进行离线计算分析,一半指标使用Spark之Scala语法进行实时计算分析;

5.分析结果使用sqoop导入mysql数据库;

6.使用flask+echarts搭建可视化大屏界面;

7.使用springboot+vue.js搭建web系统,实现智能推荐、股票预测、情感分析、知识图谱等业务功能。

完成期限和采取的主要措施:

第1-3周:熟悉题目,调研技术,拟定功能,完成开题报告编写。

第4-5周:完成总体需求分析,根据系统需要建立数据库。使用Python爬虫采集股票数据,对数据进行数据清洗。

第6-9周:初步完成数据分析的全部功能,实现股票可视化大屏。

第10-12周:搭建web系统,完成推荐、预测、情感分析等功能。

第13-16周:根据系统设计过程中的记录文挡及其功能编写毕业论文。

主要参考文献及资料名称:

[1]周志华. 机器学习[M]. 清华大学出版社, 2021.

[2]罗森林, 王晨, 王丽珍. Spark机器学习[M]. 机械工业出版社, 2022.

[3]赵鹏飞, 王妍, 吴燕, 等. 基于Hadoop的金融数据处理技术研究[J]. 微型机与应用, 2023, 36(19): 5-8.

[4]孟祥福, 王清毅, 张俊颖, 等. 基于Hadoop的金融大数据分析[J]. 计算机研究与发展, 2021, 55(4): 867-879.

[5]王晓东, 王敏, 王秀峰. 基于Spark的金融数据挖掘与分析[J]. 计算机应用研究, 2022, 36(3): 605-608.

[6]张志华, 王丽珍, 王晨. 基于Hadoop与Spark的混合计算模型研究[J]. 计算机科学与探索, 2022, 13(4): 633-642.

[7]陈明忠, 黄丽丽, 王妍. 基于Hadoop与Spark的股票数据分析与推荐系统设计[J]. 信息技术, 2020, 44(1): 44-49.

[8]王晓东, 王晨, 王秀峰. 基于Spark的股票数据挖掘与推荐算法研究[J]. 计算机应用研究, 2021, 38(1): 9-14.

[9]张志华, 王丽珍, 王晨. 基于深度学习的股票预测与推荐系统设计与实现[J]. 软件学报, 2021, 32(5): 1369-1380.

[10]王妍, 王清毅, 张俊颖, 等. 基于Spark Streaming的实时股票数据分析与推荐系统[J]. 软件学报, 2021, 32(6): 1709-1720.

[11]陈明忠, 黄丽丽, 王妍. 基于Spark的股票趋势预测与推荐算法研究[J]. 中国管理科学, 2021, 29(7): 178-186.

[12]王晓东, 王晨, 王秀峰. 基于Spark MLlib的股票分类与推荐算法研究[J]. 计算机应用研究, 2022, 39(1): 9-14.

指导教师意见:

指导教师签字:             年     月     日

核心算法代码分享如下:

import sys
from db import cnn
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

def predict1(name):
    sql = "select `name`, `open` as value from tb_flow" \
          " where name='%s' order by sdate desc limit 7 " % (name)
    with cnn.cursor() as cursor:
        cursor.execute(sql)
    print(sql)
    names = []
    y = []
    for line in cursor.fetchall():
        # print(line)
        y.append(line[1])
        names.append(line[0])
    y = y[::-1]
    X = [1, 2, 3, 4, 5, 6, 7]
    X = pd.DataFrame(X)
    X = X.values
    Poly_regressor = PolynomialFeatures(degree=2)
    Poly_X = Poly_regressor.fit_transform(X)
    regressor = LinearRegression()
    regressor.fit(Poly_X, y)
    p1 = regressor.predict(Poly_regressor.fit_transform([[8]]))
    p2 = regressor.predict(Poly_regressor.fit_transform([[9]]))
    p3 = regressor.predict(Poly_regressor.fit_transform([[10]]))
    r = []
    r.append(round(float(p1[0]),2))
    r.append(round(float(p2[0]),2))
    r.append(round(float(p3[0]),2))
    return r

def predict2(name):
    sql = "select `name`, `close` as value from tb_flow" \
          " where name='%s' order by sdate desc limit 7 " % (name)
    with cnn.cursor() as cursor:
        cursor.execute(sql)
    print(sql)
    names = []
    y = []
    for line in cursor.fetchall():
        # print(line)
        y.append(line[1])
        names.append(line[0])
    y = y[::-1]
    X = [1, 2, 3, 4, 5, 6, 7]
    X = pd.DataFrame(X)
    X = X.values
    Poly_regressor = PolynomialFeatures(degree=2)
    Poly_X = Poly_regressor.fit_transform(X)
    regressor = LinearRegression()
    regressor.fit(Poly_X, y)
    p1 = regressor.predict(Poly_regressor.fit_transform([[8]]))
    p2 = regressor.predict(Poly_regressor.fit_transform([[9]]))
    p3 = regressor.predict(Poly_regressor.fit_transform([[10]]))
    r = []
    r.append(round(float(p1[0]),2))
    r.append(round(float(p2[0]),2))
    r.append(round(float(p3[0]),2))
    return r

def predict3(name):
    sql = "select `name`, `high` as value from tb_flow" \
          " where name='%s' order by sdate desc limit 7 " % (name)
    with cnn.cursor() as cursor:
        cursor.execute(sql)
    print(sql)
    names = []
    y = []
    for line in cursor.fetchall():
        # print(line)
        y.append(line[1])
        names.append(line[0])
    y = y[::-1]
    X = [1, 2, 3, 4, 5, 6, 7]
    X = pd.DataFrame(X)
    X = X.values
    Poly_regressor = PolynomialFeatures(degree=2)
    Poly_X = Poly_regressor.fit_transform(X)
    regressor = LinearRegression()
    regressor.fit(Poly_X, y)
    p1 = regressor.predict(Poly_regressor.fit_transform([[8]]))
    p2 = regressor.predict(Poly_regressor.fit_transform([[9]]))
    p3 = regressor.predict(Poly_regressor.fit_transform([[10]]))
    r = []
    r.append(round(float(p1[0]),2))
    r.append(round(float(p2[0]),2))
    r.append(round(float(p3[0]),2))
    return r

def predict4(name):
    sql = "select `name`, `low` as value from tb_flow" \
          " where name='%s' order by sdate desc limit 7 " % (name)
    with cnn.cursor() as cursor:
        cursor.execute(sql)
    print(sql)
    names = []
    y = []
    for line in cursor.fetchall():
        # print(line)
        y.append(line[1])
        names.append(line[0])
    y = y[::-1]
    X = [1, 2, 3, 4, 5, 6, 7]
    X = pd.DataFrame(X)
    X = X.values
    Poly_regressor = PolynomialFeatures(degree=2)
    Poly_X = Poly_regressor.fit_transform(X)
    regressor = LinearRegression()
    regressor.fit(Poly_X, y)
    p1 = regressor.predict(Poly_regressor.fit_transform([[8]]))
    p2 = regressor.predict(Poly_regressor.fit_transform([[9]]))
    p3 = regressor.predict(Poly_regressor.fit_transform([[10]]))
    r = []
    r.append(round(float(p1[0]),2))
    r.append(round(float(p2[0]),2))
    r.append(round(float(p3[0]),2))
    return r

if __name__ == '__main__':
    name = sys.argv[1]
    ret = []
    r1 = predict1(name)
    r2 = predict2(name)
    r3 = predict3(name)
    r4 = predict4(name)
    ret.append(r1)
    ret.append(r2)
    ret.append(r3)
    ret.append(r4)
    print(ret)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值