温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
任务书:基于Hadoop+Spark+Hive的中药推荐系统
——中医药智能化服务关键技术研究
一、项目背景与目标
-
背景:
随着中医药产业数字化转型加速,中药材种类与用户需求呈爆发式增长。传统中药推荐依赖医师经验,存在效率低、覆盖面窄等问题。本项目旨在利用大数据技术(Hadoop、Spark、Hive)构建中药推荐系统,实现中药的精准化、智能化推荐。 -
目标:
- 构建一个支持千万级用户与百万级中药数据的推荐系统;
- 推荐准确率≥70%,实时推荐延迟≤500毫秒;
- 融合中药药理特性(四气五味、归经)与用户体质数据,提供个性化推荐服务。
二、研究内容与任务分解
1. 数据采集与预处理
- 任务1:构建中药数据采集体系
- 收集中药药理数据(如《中国药典》)、临床案例数据、用户体质数据(中医体质辨识量表);
- 整合多源数据(医院HIS系统、药企ERP系统、科研机构数据库)。
- 任务2:数据清洗与标注
- 处理缺失值、异常值,统一数据格式;
- 标注中药功效、禁忌、配伍关系等特征。
2. 分布式存储与数据仓库构建
- 任务3:基于Hadoop HDFS的分布式存储
- 设计数据分片策略,实现中药数据的高效存储;
- 构建数据备份与恢复机制。
- 任务4:Hive数据仓库设计
- 设计用户表、中药表、临床案例表等多维数据模型;
- 使用HiveQL实现数据查询与分析。
3. 中药知识图谱构建
- 任务5:中药药理关系图谱构建
- 提取中药功效、归经、配伍禁忌等关系,构建知识图谱;
- 使用图数据库(如Neo4j)存储与查询关系数据。
- 任务6:图谱增强推荐算法
- 基于图神经网络(GNN)挖掘中药之间的潜在关联;
- 结合用户体质数据,优化推荐结果。
4. 推荐算法实现与优化
- 任务7:多模态推荐算法设计
- 融合用户症状文本特征(NLP处理)、中药图像特征(CNN提取)、用户行为特征(ALS协同过滤);
- 基于Spark MLlib实现推荐模型(如Wide & Deep模型)。
- 任务8:实时推荐与性能优化
- 使用Spark Streaming处理实时数据流,结合Redis缓存加速推荐响应;
- 通过A/B测试与用户反馈,迭代优化推荐算法。
5. 系统集成与测试
- 任务9:推荐服务开发
- 开发RESTful API,提供中药推荐、药理解释、用户反馈等功能;
- 构建前端界面,支持用户交互与推荐结果展示。
- 任务10:系统测试与评估
- 进行功能测试、性能测试(如吞吐量、延迟)、安全测试;
- 评估推荐准确率、覆盖率、用户满意度等指标。
三、技术路线与工具
- 技术栈:
- 存储层:Hadoop HDFS、Hive;
- 计算层:Spark Core、Spark SQL、Spark MLlib、Spark Streaming;
- 知识图谱:Neo4j、JanusGraph;
- 实时处理:Kafka、Redis;
- 前端开发:Vue.js、React。
- 关键技术难点:
- 中药药理特性与推荐算法的深度融合;
- 实时推荐系统的低延迟响应;
- 多源异构数据的标准化处理。
四、进度安排
阶段 | 时间 | 任务 | 交付物 |
---|---|---|---|
数据采集与预处理 | 第1-2月 | 收集与清洗中药数据 | 标准化数据集 |
知识图谱构建 | 第3-4月 | 构建中药药理关系图谱 | 图谱数据与查询接口 |
算法实现与优化 | 第5-7月 | 实现推荐算法,进行模型训练与调优 | 推荐模型与性能评估报告 |
系统集成与测试 | 第8-9月 | 部署推荐服务,进行性能与准确性测试 | 系统测试报告与用户反馈分析 |
论文撰写与验收 | 第10-12月 | 总结研究成果,撰写项目报告与论文 | 项目验收报告、学术论文 |
五、预期成果
- 系统成果:
- 一个可扩展的中药推荐系统,支持大规模数据存储与实时推荐;
- 提供中药推荐、药理解释、用户反馈等完整服务。
- 技术成果:
- 一套中药推荐系统的标准数据集与算法库;
- 一种融合中药药理特性的多模态推荐算法。
- 应用成果:
- 在合作医院或药企进行试点应用,提升中药推荐效率与准确性;
- 形成中医药智能化服务的示范案例。
六、资源需求
- 硬件资源:
- 服务器集群(4-8节点,配置Hadoop、Spark、Hive);
- 图数据库服务器(如Neo4j);
- 缓存服务器(Redis)。
- 软件资源:
- 开源大数据工具(Hadoop、Spark、Hive等);
- 开发工具(IntelliJ IDEA、PyCharm);
- 数据可视化工具(Tableau、PowerBI)。
- 人力资源:
- 项目负责人1名,大数据工程师2名,中医药专家1名,测试工程师1名。
七、风险与应对措施
- 数据质量风险:
- 风险:多源数据格式不统一,影响推荐准确性。
- 措施:建立数据清洗与标注规范,使用数据质量监控工具。
- 技术实现风险:
- 风险:中药药理特性与推荐算法融合困难。
- 措施:与中医药专家合作,分阶段验证算法效果。
- 时间进度风险:
- 风险:算法优化与系统测试耗时超预期。
- 措施:预留20%的缓冲时间,定期进行进度检查。
八、项目负责人与团队
- 项目负责人:XXX
- 团队成员:
- 大数据工程师:XXX、XXX
- 中医药专家:XXX
- 测试工程师:XXX
九、审批意见
-
指导教师意见:
(签字)____________________
日期:____________________ -
学院审批意见:
(盖章)____________________
日期:____________________
任务书制定人:XXX
日期:2023年XX月XX日
学院:XXX学院
备注:本任务书可根据实际研究进展调整,需重点推进中药药理特性与推荐算法的深度融合。
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻