计算机毕业设计hadoop+spark+hive中药推荐系统 中药可视化 中药知识图谱 大数据毕业设计(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

任务书:基于Hadoop+Spark+Hive的中药推荐系统

——中医药智能化服务关键技术研究

一、项目背景与目标
  1. 背景
    随着中医药产业数字化转型加速,中药材种类与用户需求呈爆发式增长。传统中药推荐依赖医师经验,存在效率低、覆盖面窄等问题。本项目旨在利用大数据技术(Hadoop、Spark、Hive)构建中药推荐系统,实现中药的精准化、智能化推荐。

  2. 目标

    • 构建一个支持千万级用户与百万级中药数据的推荐系统;
    • 推荐准确率≥70%,实时推荐延迟≤500毫秒;
    • 融合中药药理特性(四气五味、归经)与用户体质数据,提供个性化推荐服务。
二、研究内容与任务分解

1. 数据采集与预处理

  • 任务1:构建中药数据采集体系
    • 收集中药药理数据(如《中国药典》)、临床案例数据、用户体质数据(中医体质辨识量表);
    • 整合多源数据(医院HIS系统、药企ERP系统、科研机构数据库)。
  • 任务2:数据清洗与标注
    • 处理缺失值、异常值,统一数据格式;
    • 标注中药功效、禁忌、配伍关系等特征。

2. 分布式存储与数据仓库构建

  • 任务3:基于Hadoop HDFS的分布式存储
    • 设计数据分片策略,实现中药数据的高效存储;
    • 构建数据备份与恢复机制。
  • 任务4:Hive数据仓库设计
    • 设计用户表、中药表、临床案例表等多维数据模型;
    • 使用HiveQL实现数据查询与分析。

3. 中药知识图谱构建

  • 任务5:中药药理关系图谱构建
    • 提取中药功效、归经、配伍禁忌等关系,构建知识图谱;
    • 使用图数据库(如Neo4j)存储与查询关系数据。
  • 任务6:图谱增强推荐算法
    • 基于图神经网络(GNN)挖掘中药之间的潜在关联;
    • 结合用户体质数据,优化推荐结果。

4. 推荐算法实现与优化

  • 任务7:多模态推荐算法设计
    • 融合用户症状文本特征(NLP处理)、中药图像特征(CNN提取)、用户行为特征(ALS协同过滤);
    • 基于Spark MLlib实现推荐模型(如Wide & Deep模型)。
  • 任务8:实时推荐与性能优化
    • 使用Spark Streaming处理实时数据流,结合Redis缓存加速推荐响应;
    • 通过A/B测试与用户反馈,迭代优化推荐算法。

5. 系统集成与测试

  • 任务9:推荐服务开发
    • 开发RESTful API,提供中药推荐、药理解释、用户反馈等功能;
    • 构建前端界面,支持用户交互与推荐结果展示。
  • 任务10:系统测试与评估
    • 进行功能测试、性能测试(如吞吐量、延迟)、安全测试;
    • 评估推荐准确率、覆盖率、用户满意度等指标。
三、技术路线与工具
  1. 技术栈
    • 存储层:Hadoop HDFS、Hive;
    • 计算层:Spark Core、Spark SQL、Spark MLlib、Spark Streaming;
    • 知识图谱:Neo4j、JanusGraph;
    • 实时处理:Kafka、Redis;
    • 前端开发:Vue.js、React。
  2. 关键技术难点
    • 中药药理特性与推荐算法的深度融合;
    • 实时推荐系统的低延迟响应;
    • 多源异构数据的标准化处理。
四、进度安排

阶段时间任务交付物
数据采集与预处理第1-2月收集与清洗中药数据标准化数据集
知识图谱构建第3-4月构建中药药理关系图谱图谱数据与查询接口
算法实现与优化第5-7月实现推荐算法,进行模型训练与调优推荐模型与性能评估报告
系统集成与测试第8-9月部署推荐服务,进行性能与准确性测试系统测试报告与用户反馈分析
论文撰写与验收第10-12月总结研究成果,撰写项目报告与论文项目验收报告、学术论文
五、预期成果
  1. 系统成果
    • 一个可扩展的中药推荐系统,支持大规模数据存储与实时推荐;
    • 提供中药推荐、药理解释、用户反馈等完整服务。
  2. 技术成果
    • 一套中药推荐系统的标准数据集与算法库;
    • 一种融合中药药理特性的多模态推荐算法。
  3. 应用成果
    • 在合作医院或药企进行试点应用,提升中药推荐效率与准确性;
    • 形成中医药智能化服务的示范案例。
六、资源需求
  1. 硬件资源
    • 服务器集群(4-8节点,配置Hadoop、Spark、Hive);
    • 图数据库服务器(如Neo4j);
    • 缓存服务器(Redis)。
  2. 软件资源
    • 开源大数据工具(Hadoop、Spark、Hive等);
    • 开发工具(IntelliJ IDEA、PyCharm);
    • 数据可视化工具(Tableau、PowerBI)。
  3. 人力资源
    • 项目负责人1名,大数据工程师2名,中医药专家1名,测试工程师1名。
七、风险与应对措施
  1. 数据质量风险
    • 风险:多源数据格式不统一,影响推荐准确性。
    • 措施:建立数据清洗与标注规范,使用数据质量监控工具。
  2. 技术实现风险
    • 风险:中药药理特性与推荐算法融合困难。
    • 措施:与中医药专家合作,分阶段验证算法效果。
  3. 时间进度风险
    • 风险:算法优化与系统测试耗时超预期。
    • 措施:预留20%的缓冲时间,定期进行进度检查。
八、项目负责人与团队
  • 项目负责人:XXX
  • 团队成员
    • 大数据工程师:XXX、XXX
    • 中医药专家:XXX
    • 测试工程师:XXX
九、审批意见
  • 指导教师意见
    (签字)____________________
    日期:____________________

  • 学院审批意见
    (盖章)____________________
    日期:____________________


任务书制定人:XXX
日期:2023年XX月XX日
学院:XXX学院


备注:本任务书可根据实际研究进展调整,需重点推进中药药理特性与推荐算法的深度融合。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值