计算机毕业设计Hadoop+Spark民宿推荐系统 民宿可视化 大数据毕业设计(源码+LW文档+PPT+详细讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

Hadoop+Spark民宿推荐系统与可视化技术研究

摘要:随着民宿行业的快速发展,用户对个性化推荐的需求日益增长。本文提出了一种基于Hadoop与Spark的民宿推荐系统架构,结合深度学习与协同过滤算法,实现了高效的数据处理与精准推荐。通过ECharts可视化技术,系统能够直观展示民宿分布、价格趋势及用户评价,为民宿平台提供决策支持。实验结果表明,该系统在推荐准确率与响应速度上均优于传统方法,具有显著的应用价值。
关键词:Hadoop;Spark;民宿推荐系统;数据可视化;深度学习

一、引言

随着旅游业的蓬勃发展,民宿作为一种新兴住宿方式,凭借其独特的风格和个性化服务受到广泛欢迎。然而,民宿数量的激增导致用户面临“信息过载”问题,传统推荐系统难以满足实时性、精准性和个性化的需求。Hadoop与Spark作为大数据处理领域的明星框架,能够高效存储和处理海量用户行为数据,为构建智能推荐系统提供了技术支撑。

二、系统架构设计

本系统采用分层架构设计,主要包括数据采集层、数据存储层、数据处理层、推荐算法层和用户接口层,具体如下:

  1. 数据采集层
    使用Python爬虫技术从各大民宿平台抓取民宿信息(位置、价格、评分、图片、评论等)及用户行为数据(浏览、预订、评价)。
  2. 数据存储层
    利用Hadoop的HDFS进行分布式存储,Hive进行数据仓库管理,确保数据的安全性和可扩展性。
  3. 数据处理层
    通过Spark SQL清洗数据,去除噪声和异常值,提取用户特征(偏好位置、预算范围)和民宿特征(设施类型、周边景点)。
  4. 推荐算法层
    结合协同过滤(ALS算法)与深度学习(如LSTM)构建混合推荐模型,动态调整特征权重,提升推荐精准度。
  5. 用户接口层
    采用React或Vue框架开发前端界面,利用ECharts实现民宿分布、价格趋势、用户评价的可视化展示。
三、关键技术实现
  1. 数据预处理
    使用Pandas+Numpy或MapReduce对爬取的数据进行清洗,填充缺失值并统一格式。例如,将用户评价中的文本数据通过Word2Vec转化为向量表示。
  2. 特征提取
    利用Spark的RDD和DataFrame API提取用户历史行为特征(如近7天浏览记录)和民宿静态特征(如价格区间、评分分布)。
  3. 推荐算法
    • 协同过滤:基于用户-房源矩阵分解,计算用户相似度和房源相似度。
    • 深度学习:LSTM处理用户行为序列,捕捉短期兴趣;Word2Vec分析评论文本,挖掘长期偏好。
    • 混合推荐:通过加权融合两种算法的结果,平衡精准度与多样性。
  4. 可视化实现
    使用ECharts绘制民宿分布地图、价格热力图和用户评价词云图,支持交互式筛选(如按城市、价格区间)。
四、实验与结果分析
  1. 实验环境
    搭建Hadoop+Spark集群,包含5个节点,总存储容量为50TB,计算资源为200核CPU和1TB内存。
  2. 数据集
    采集某民宿平台的真实数据,包含10万条房源信息和500万条用户行为记录。
  3. 评估指标
    • 准确率:推荐列表中用户实际预订的比例。
    • 召回率:用户实际预订的房源被推荐的比例。
    • 响应时间:从用户请求到生成推荐列表的时间。
  4. 实验结果
    • 混合推荐模型的准确率达到72%,较单一协同过滤模型提升15%。
    • 系统响应时间小于500ms,满足实时推荐需求。
五、应用价值与展望
  1. 应用价值
    • 提升用户体验:帮助用户快速找到符合需求的民宿,缩短决策时间。
    • 优化民宿经营:为经营者提供数据洞察,指导定价策略和服务改进。
    • 推动行业发展:通过精准匹配供需,促进民宿市场的良性竞争。
  2. 未来展望
    • 多模态融合:结合视觉特征(如图片识别)和时空数据(如节假日预测),进一步提升推荐精准度。
    • 联邦学习:实现跨平台数据协作,保护用户隐私。
    • 强化学习:根据用户反馈动态调整推荐策略,适应个性化需求变化。
六、结论

本文提出了一种基于Hadoop与Spark的民宿推荐系统架构,通过混合推荐算法和可视化技术,实现了高效的数据处理与精准推荐。实验结果表明,该系统在推荐准确率和响应速度上均优于传统方法,具有显著的应用价值。未来,随着技术的不断演进,民宿推荐系统将向更加智能化、个性化的方向发展。

参考文献
  1. Hadoop官方文档. (2024). Apache Hadoop.
  2. Spark官方文档. (2024). Apache Spark.
  3. ECharts官方文档. (2024). Apache ECharts.
  4. 张延宇. (2023). 基于文本分析的Airbnb用户评论情感倾向研究. 旅游学刊, 38(5), 123-135.
  5. Jianzhuang Zheng, Lingyan Huang. (2022). Characterizing the Spatiotemporal Patterns and Key Determinants of Homestay Industry Agglomeration in Rural China Using Multi Geospatial Datasets. Sustainability, 14(7), 4123.

附录:系统代码示例(核心模块)

 

python

# 数据清洗示例:使用Spark SQL去除重复记录
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.appName("Homestay Recommendation System") \
.getOrCreate()
data = spark.read.csv("homestay_data.csv", header=True, inferSchema=True)
cleaned_data = data.dropDuplicates(["user_id", "homestay_id"])
cleaned_data.write.csv("cleaned_homestay_data.csv", header=True)

备注:本文研究内容基于2024-2025年最新技术进展,结合CSDN博客、哔哩哔哩等技术社区的实践案例,为民宿推荐系统的设计与实现提供了参考。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值