P1004 [NOIP 2000 提高组] 方格取数

题目描述

设有 N×N 的方格图 (N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 0。如下图所示(见样例):

某人从图的左上角的 A 点出发,可以向下行走,也可以向右走,直到到达右下角的 B 点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字 0)。
此人从 A 点到 B 点共走两次,试找出 2 条这样的路径,使得取得的数之和为最大。

输入格式

输入的第一行为一个整数 N(表示 N×N 的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的 0 表示输入结束。

输出格式

只需输出一个整数,表示 2 条路径上取得的最大的和。

输入输出样例

输入 

8
2 3 13
2 6  6
3 5  7
4 4 14
5 2 21
5 6  4
6 3 15
7 2 14
0 0  0

输出 

67

说明/提示

数据范围:1≤N≤9。

代码

无注释版

#include<bits/stdc++.h>
using namespace std;
int qq[20][20];
int pp[20][20][20][20];
int main(){
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int n;
	cin>>n;
	int a,b,c;
	while(cin>>a>>b>>c&&a!=0&&b!=0&&c!=0){
		qq[a][b]=c;
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			for(int p=1;p<=n;p++){
				for(int q=1;q<=n;q++){
					pp[i][j][p][q]=max(pp[i-1][j][p][q-1],max(pp[i-1][j][p-1][q],
					max(pp[i][j-1][p][q-1],pp[i][j-1][p-1][q])))+qq[i][j]+qq[p][q];
					if(i==p&&j==q){
						pp[i][j][p][q]-=qq[i][j];
					}
				}
			}
		}
	}
	cout<<pp[n][n][n][n]<<"\n";
} 

有注释版

#include<bits/stdc++.h>  // 引入标准库,包含常用的C++库
using namespace std;  // 使用标准命名空间

int qq[20][20];  // qq[a][b]存储方格(a, b)上面的数值
int pp[20][20][20][20];  // pp[i][j][p][q]表示从(1, 1)到(i, j)的路径和与从(1, 1)到(p, q)的路径和(两个路径不能重叠)

int main(){
    ios::sync_with_stdio(0);  // 加速输入输出
    cin.tie(0);  // 解绑cin和cout,提升效率
    cout.tie(0);  // 解绑cin和cout,提升效率

    int n;
    cin >> n;  // 输入方格的大小 N

    int a, b, c;
    // 输入方格中的值,直到输入 0 0 0 为止
    while(cin >> a >> b >> c && a != 0 && b != 0 && c != 0) {
        qq[a][b] = c;  // 在方格(a, b)中填入数字c
    }

    // 动态规划计算从(1, 1)到任意点(i, j)的路径和,以及从(1, 1)到任意点(p, q)的路径和
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= n; j++) {
            for(int p = 1; p <= n; p++) {
                for(int q = 1; q <= n; q++) {
                    // 动态规划公式:更新pp[i][j][p][q],即从(1, 1)到(i, j)和从(1, 1)到(p, q)的路径和
                    pp[i][j][p][q] = max(pp[i-1][j][p][q-1], max(pp[i-1][j][p-1][q],
                        max(pp[i][j-1][p][q-1], pp[i][j-1][p-1][q]))) + qq[i][j] + qq[p][q];

                    // 如果路径(i, j)和(p, q)重叠,那么需要减去重复的方格值
                    if(i == p && j == q) {
                        pp[i][j][p][q] -= qq[i][j];  // 减去重复的格子值
                    }
                }
            }
        }
    }

    // 输出从(1, 1)到(n, n)和从(1, 1)到(n, n)的路径和的最大值
    cout << pp[n][n][n][n] << "\n";
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值