计算机毕业设计Python+大模型高考推荐系统 高考可视化 大数据毕业设计(源码+LW文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

《Python+大模型高考推荐系统与高考可视化》任务书

一、任务基本信息

  1. 任务名称
    Python+大模型高考推荐系统与高考可视化平台开发

  2. 任务来源

    • 课题类型:校级/省级大学生创新训练项目/横向课题/毕业设计
    • 立项单位:XX大学计算机学院/XX教育科技公司
    • 立项时间:202X年XX月
  3. 任务周期
    202X年XX月—202X年XX月(共XX个月)

  4. 任务负责人

    • 姓名:XXX
    • 学号/工号:XXXXXXXX
    • 专业/部门:计算机科学与技术/人工智能实验室
  5. 参与人员及分工

    姓名角色分工内容
    张三技术负责人系统架构设计、大模型集成与推荐算法开发
    李四数据工程师多源数据采集、清洗与多模态数据预处理
    王五前端开发工程师可视化模块设计与交互实现
    赵六测试工程师系统功能测试、性能优化与用户体验评估

二、任务背景与目标

2.1 任务背景

我国高考志愿填报存在以下痛点:

  • 信息碎片化:考生需同时处理高校官网、招生简章、社交媒体等多源数据,信息整合效率低。
  • 决策维度单一:传统系统依赖分数匹配,忽视考生兴趣、职业规划及院校专业适配度。
  • 动态响应不足:新高考改革(如“3+1+2”选科模式)导致录取规则变化,现有系统难以实时调整推荐策略。

2.2 任务目标

基于Python与大模型技术,开发一套高考推荐与可视化系统,实现以下功能:

  1. 智能推荐
    • 结合考生分数、选科、兴趣标签及院校专业适配度,生成“冲-稳-保”志愿梯度方案。
    • 支持多轮交互优化(如调整兴趣权重后重新生成推荐列表)。
  2. 多模态数据融合
    • 整合院校官网图片、招生视频、社交媒体舆情等数据,构建跨模态特征表示。
    • 实现图文语义一致性判断(如通过图片识别实验室设备,辅助判断专业实力)。
  3. 动态可视化分析
    • 提供录取概率雷达图、专业竞争力气泡图、志愿填报甘特图等交互式看板。
    • 支持数据下钻与实时预警(如填报冲突提示、志愿梯度合理性分析)。

三、任务内容与技术方案

3.1 任务内容

3.1.1 数据采集与预处理
  • 数据源
    • 结构化数据:教育部阳光高考平台(历年分数线、招生计划)、各省市教育考试院政策文件。
    • 非结构化数据:高校官网图片(实验室/校园环境)、招生视频(专业介绍)、微博高考话题舆情。
  • 技术方案
    • 爬虫框架:Scrapy+Selenium动态爬取,结合代理IP池与请求频率控制(每秒≤2次)。
    • 非结构化处理
      • 图片:使用OpenCV提取颜色特征,ResNet50提取深度特征。
      • 视频:FFmpeg截取关键帧,ASR转写语音为文本。
      • 文本:调用千问大模型API提取关键词(如“就业前景”“保研率”)。
    • 数据清洗
      • 缺失值处理:KNN插值法填充分数数据,众数填充选科类别。
      • 异常值检测:箱线图IQR规则剔除分数线异常值(如某专业分数线超过全省前1%考生分数)。
3.1.2 大模型驱动的推荐引擎
  • 技术架构
     

    mermaid

    graph TD
    A[用户输入] --> B[大模型意图理解]
    B --> C[多模态特征融合]
    C --> D[混合推荐算法]
    D --> E[推荐结果输出]
  • 关键技术
    • 大模型语义解析
      • 调用千问大模型API,通过Prompt Engineering设计提示词(如“分析考生兴趣标签‘计算机’与目标专业‘软件工程’的匹配度”)。
      • 输出情感倾向(如“考生对AI方向兴趣强烈,推荐院校需具备AI实验室”)。
    • 多模态融合
      • 图文对齐:通过CLIP模型计算图片与专业描述文本的相似度(公式:sim(v, t) = cos(E_v(v), E_t(t)))。
      • 跨模态注意力:在推荐模型中引入交叉注意力层,动态调整图文权重。
    • 混合推荐算法
       

      math

      Score = α·CF_{Score} + β·CB_{Score} + γ·KG_{Score} + δ·MM_{Score}
      • CF_{Score}:协同过滤得分(基于历史填报数据)。
      • CB_{Score}:内容推荐得分(基于专业描述与考生兴趣匹配度)。
      • KG_{Score}:知识图谱推理得分(如“专业-就业领域-行业薪资”关联)。
      • MM_{Score}:多模态融合得分(图文语义一致性权重)。
      • 权重参数α,β,γ,δ通过贝叶斯优化动态调整。
3.1.3 动态可视化模块
  • 功能设计
    • 录取概率雷达图
      • 维度:院校层次(985/211/双一流)、专业排名、地域偏好、学费承受力。
      • 交互:支持鼠标悬停显示具体数值,点击维度可展开子项(如“地域偏好”下钻至“一线城市/新一线城市”)。
    • 专业竞争力气泡图
      • 横轴:近3年平均就业率,纵轴:起薪中位数,气泡大小:招生规模。
      • 动态:时间轴滑动展示专业竞争力变化趋势。
    • 志愿填报甘特图
      • 任务:志愿填报、审核、录取查询等关键节点。
      • 预警:冲突检测(如同一批次填报多所院校时间重叠)、梯度合理性分析(如“冲”志愿超过3所)。

3.2 技术路线

 

mermaid

graph TD
A[需求分析] --> B[系统设计]
B --> C[数据采集]
B --> D[模型开发]
B --> E[前端开发]
C --> F[数据预处理]
D --> G[大模型集成]
D --> H[推荐算法实现]
E --> I[可视化组件开发]
F --> J[多模态特征工程]
G --> H
H --> K[系统集成]
I --> K
K --> L[测试与优化]
L --> M[部署上线]

四、任务分工与进度安排

4.1 分阶段任务分工

阶段时间负责人任务内容
需求调研202X.XX-202X.XX全体成员访谈考生、家长、招生办,梳理功能需求与非功能需求(如响应时间≤3秒)。
数据采集202X.XX-202X.XX李四完成多源数据采集,构建统一数据仓库(MySQL+MongoDB)。
模型开发202X.XX-202X.XX张三集成千问大模型API,实现多模态融合与混合推荐算法。
前端开发202X.XX-202X.XX王五基于Vue.js+ECharts开发可视化看板,支持PC端与移动端适配。
系统测试202X.XX-202X.XX赵六执行单元测试、集成测试与用户试用,修复Bug≥50个。
部署上线202X.XX-202X.XX张三部署至阿里云ECS,配置负载均衡与自动扩缩容。

4.2 关键里程碑

  • 202X年XX月XX日:完成需求文档与系统原型设计。
  • 202X年XX月XX日:实现大模型集成与基础推荐功能。
  • 202X年XX月XX日:通过用户测试,NPS净推荐值≥40。
  • 202X年XX月XX日:系统上线并提交验收报告。

五、预期成果与考核指标

5.1 预期成果

  1. 系统平台
    • 名称:XX高考智能推荐系统
    • 功能:支持考生注册、兴趣标签填写、志愿推荐、可视化分析、历史数据导出。
  2. 数据集
    • 名称:XX高考多模态数据集
    • 规模:50万条结构化数据(含历年分数线、招生计划),10万条非结构化数据(图片、视频、文本)。
  3. 技术文档
    • 系统设计说明书、接口文档、测试报告、用户手册。

5.2 考核指标

指标类别指标项目标值
功能指标推荐准确率(HR@10)≥85%
可视化响应时间≤2秒
性能指标系统并发能力支持1000人同时在线
推荐生成时间≤5秒(单用户)
用户指标用户满意度(NPS)≥40
推荐方案采纳率≥60%

六、经费预算

预算科目金额(元)说明
服务器租赁5000阿里云ECS(4核8G,3个月)
代理IP费用2000动态IP池服务
大模型API调用3000千问大模型调用费用(预估)
测试费用1000用户测试激励(如礼品卡)
总计11000

七、风险评估与应对措施

风险类型风险描述应对措施
技术风险大模型API调用延迟或故障部署本地缓存机制,对高频查询内容(如热搜专业)建立本地知识库。
数据风险高校官网反爬机制升级导致数据采集失败定期更新爬虫策略,增加请求间隔随机化(1-3秒),采用分布式爬虫架构。
用户风险考生对推荐结果信任度低增加推荐结果解释功能(如“为什么推荐该专业?”),提供数据来源与计算逻辑说明。
时间风险开发进度延迟采用敏捷开发模式,每周召开站会同步进度,关键节点设置缓冲区。

八、任务验收标准

  1. 功能验收
    • 完成需求文档中所有功能模块,通过单元测试与集成测试。
  2. 性能验收
    • 系统在高并发场景下(1000人同时在线)响应时间≤3秒。
  3. 文档验收
    • 提交完整的技术文档(含系统设计、接口说明、测试报告)。
  4. 用户验收
    • 通过用户试用(NPS≥40),推荐方案采纳率≥60%。

任务负责人签字:_________
日期:202X年XX月XX日
指导教师签字:_________
日期:202X年XX月XX日

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值