温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
《Python+大模型高考推荐系统与高考可视化》任务书
一、任务基本信息
-
任务名称
Python+大模型高考推荐系统与高考可视化平台开发 -
任务来源
- 课题类型:校级/省级大学生创新训练项目/横向课题/毕业设计
- 立项单位:XX大学计算机学院/XX教育科技公司
- 立项时间:202X年XX月
-
任务周期
202X年XX月—202X年XX月(共XX个月) -
任务负责人
- 姓名:XXX
- 学号/工号:XXXXXXXX
- 专业/部门:计算机科学与技术/人工智能实验室
-
参与人员及分工
姓名 角色 分工内容 张三 技术负责人 系统架构设计、大模型集成与推荐算法开发 李四 数据工程师 多源数据采集、清洗与多模态数据预处理 王五 前端开发工程师 可视化模块设计与交互实现 赵六 测试工程师 系统功能测试、性能优化与用户体验评估
二、任务背景与目标
2.1 任务背景
我国高考志愿填报存在以下痛点:
- 信息碎片化:考生需同时处理高校官网、招生简章、社交媒体等多源数据,信息整合效率低。
- 决策维度单一:传统系统依赖分数匹配,忽视考生兴趣、职业规划及院校专业适配度。
- 动态响应不足:新高考改革(如“3+1+2”选科模式)导致录取规则变化,现有系统难以实时调整推荐策略。
2.2 任务目标
基于Python与大模型技术,开发一套高考推荐与可视化系统,实现以下功能:
- 智能推荐:
- 结合考生分数、选科、兴趣标签及院校专业适配度,生成“冲-稳-保”志愿梯度方案。
- 支持多轮交互优化(如调整兴趣权重后重新生成推荐列表)。
- 多模态数据融合:
- 整合院校官网图片、招生视频、社交媒体舆情等数据,构建跨模态特征表示。
- 实现图文语义一致性判断(如通过图片识别实验室设备,辅助判断专业实力)。
- 动态可视化分析:
- 提供录取概率雷达图、专业竞争力气泡图、志愿填报甘特图等交互式看板。
- 支持数据下钻与实时预警(如填报冲突提示、志愿梯度合理性分析)。
三、任务内容与技术方案
3.1 任务内容
3.1.1 数据采集与预处理
- 数据源:
- 结构化数据:教育部阳光高考平台(历年分数线、招生计划)、各省市教育考试院政策文件。
- 非结构化数据:高校官网图片(实验室/校园环境)、招生视频(专业介绍)、微博高考话题舆情。
- 技术方案:
- 爬虫框架:Scrapy+Selenium动态爬取,结合代理IP池与请求频率控制(每秒≤2次)。
- 非结构化处理:
- 图片:使用OpenCV提取颜色特征,ResNet50提取深度特征。
- 视频:FFmpeg截取关键帧,ASR转写语音为文本。
- 文本:调用千问大模型API提取关键词(如“就业前景”“保研率”)。
- 数据清洗:
- 缺失值处理:KNN插值法填充分数数据,众数填充选科类别。
- 异常值检测:箱线图IQR规则剔除分数线异常值(如某专业分数线超过全省前1%考生分数)。
3.1.2 大模型驱动的推荐引擎
- 技术架构:
mermaid
graph TD
A[用户输入] --> B[大模型意图理解]
B --> C[多模态特征融合]
C --> D[混合推荐算法]
D --> E[推荐结果输出]
- 关键技术:
- 大模型语义解析:
- 调用千问大模型API,通过Prompt Engineering设计提示词(如“分析考生兴趣标签‘计算机’与目标专业‘软件工程’的匹配度”)。
- 输出情感倾向(如“考生对AI方向兴趣强烈,推荐院校需具备AI实验室”)。
- 多模态融合:
- 图文对齐:通过CLIP模型计算图片与专业描述文本的相似度(公式:
sim(v, t) = cos(E_v(v), E_t(t))
)。 - 跨模态注意力:在推荐模型中引入交叉注意力层,动态调整图文权重。
- 图文对齐:通过CLIP模型计算图片与专业描述文本的相似度(公式:
- 混合推荐算法:
math
Score = α·CF_{Score} + β·CB_{Score} + γ·KG_{Score} + δ·MM_{Score}
CF_{Score}
:协同过滤得分(基于历史填报数据)。CB_{Score}
:内容推荐得分(基于专业描述与考生兴趣匹配度)。KG_{Score}
:知识图谱推理得分(如“专业-就业领域-行业薪资”关联)。MM_{Score}
:多模态融合得分(图文语义一致性权重)。- 权重参数
α,β,γ,δ
通过贝叶斯优化动态调整。
- 大模型语义解析:
3.1.3 动态可视化模块
- 功能设计:
- 录取概率雷达图:
- 维度:院校层次(985/211/双一流)、专业排名、地域偏好、学费承受力。
- 交互:支持鼠标悬停显示具体数值,点击维度可展开子项(如“地域偏好”下钻至“一线城市/新一线城市”)。
- 专业竞争力气泡图:
- 横轴:近3年平均就业率,纵轴:起薪中位数,气泡大小:招生规模。
- 动态:时间轴滑动展示专业竞争力变化趋势。
- 志愿填报甘特图:
- 任务:志愿填报、审核、录取查询等关键节点。
- 预警:冲突检测(如同一批次填报多所院校时间重叠)、梯度合理性分析(如“冲”志愿超过3所)。
- 录取概率雷达图:
3.2 技术路线
mermaid
graph TD | |
A[需求分析] --> B[系统设计] | |
B --> C[数据采集] | |
B --> D[模型开发] | |
B --> E[前端开发] | |
C --> F[数据预处理] | |
D --> G[大模型集成] | |
D --> H[推荐算法实现] | |
E --> I[可视化组件开发] | |
F --> J[多模态特征工程] | |
G --> H | |
H --> K[系统集成] | |
I --> K | |
K --> L[测试与优化] | |
L --> M[部署上线] |
四、任务分工与进度安排
4.1 分阶段任务分工
阶段 | 时间 | 负责人 | 任务内容 |
---|---|---|---|
需求调研 | 202X.XX-202X.XX | 全体成员 | 访谈考生、家长、招生办,梳理功能需求与非功能需求(如响应时间≤3秒)。 |
数据采集 | 202X.XX-202X.XX | 李四 | 完成多源数据采集,构建统一数据仓库(MySQL+MongoDB)。 |
模型开发 | 202X.XX-202X.XX | 张三 | 集成千问大模型API,实现多模态融合与混合推荐算法。 |
前端开发 | 202X.XX-202X.XX | 王五 | 基于Vue.js+ECharts开发可视化看板,支持PC端与移动端适配。 |
系统测试 | 202X.XX-202X.XX | 赵六 | 执行单元测试、集成测试与用户试用,修复Bug≥50个。 |
部署上线 | 202X.XX-202X.XX | 张三 | 部署至阿里云ECS,配置负载均衡与自动扩缩容。 |
4.2 关键里程碑
- 202X年XX月XX日:完成需求文档与系统原型设计。
- 202X年XX月XX日:实现大模型集成与基础推荐功能。
- 202X年XX月XX日:通过用户测试,NPS净推荐值≥40。
- 202X年XX月XX日:系统上线并提交验收报告。
五、预期成果与考核指标
5.1 预期成果
- 系统平台:
- 名称:XX高考智能推荐系统
- 功能:支持考生注册、兴趣标签填写、志愿推荐、可视化分析、历史数据导出。
- 数据集:
- 名称:XX高考多模态数据集
- 规模:50万条结构化数据(含历年分数线、招生计划),10万条非结构化数据(图片、视频、文本)。
- 技术文档:
- 系统设计说明书、接口文档、测试报告、用户手册。
5.2 考核指标
指标类别 | 指标项 | 目标值 |
---|---|---|
功能指标 | 推荐准确率(HR@10) | ≥85% |
可视化响应时间 | ≤2秒 | |
性能指标 | 系统并发能力 | 支持1000人同时在线 |
推荐生成时间 | ≤5秒(单用户) | |
用户指标 | 用户满意度(NPS) | ≥40 |
推荐方案采纳率 | ≥60% |
六、经费预算
预算科目 | 金额(元) | 说明 |
---|---|---|
服务器租赁 | 5000 | 阿里云ECS(4核8G,3个月) |
代理IP费用 | 2000 | 动态IP池服务 |
大模型API调用 | 3000 | 千问大模型调用费用(预估) |
测试费用 | 1000 | 用户测试激励(如礼品卡) |
总计 | 11000 |
七、风险评估与应对措施
风险类型 | 风险描述 | 应对措施 |
---|---|---|
技术风险 | 大模型API调用延迟或故障 | 部署本地缓存机制,对高频查询内容(如热搜专业)建立本地知识库。 |
数据风险 | 高校官网反爬机制升级导致数据采集失败 | 定期更新爬虫策略,增加请求间隔随机化(1-3秒),采用分布式爬虫架构。 |
用户风险 | 考生对推荐结果信任度低 | 增加推荐结果解释功能(如“为什么推荐该专业?”),提供数据来源与计算逻辑说明。 |
时间风险 | 开发进度延迟 | 采用敏捷开发模式,每周召开站会同步进度,关键节点设置缓冲区。 |
八、任务验收标准
- 功能验收:
- 完成需求文档中所有功能模块,通过单元测试与集成测试。
- 性能验收:
- 系统在高并发场景下(1000人同时在线)响应时间≤3秒。
- 文档验收:
- 提交完整的技术文档(含系统设计、接口说明、测试报告)。
- 用户验收:
- 通过用户试用(NPS≥40),推荐方案采纳率≥60%。
任务负责人签字:_________
日期:202X年XX月XX日
指导教师签字:_________
日期:202X年XX月XX日
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻