计算机毕业设计Python+百度千问大模型微博舆情分析预测 微博情感分析可视化 大数据毕业设计(源码+LW文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

《Python+百度千问大模型微博舆情分析预测》开题报告

一、选题背景与意义

(一)选题背景

随着互联网技术的飞速发展,微博等社交媒体平台已成为公众表达意见、分享情感和交流信息的重要渠道。微博日均产生超5亿条用户生成内容(UGC),这些数据蕴含着丰富的社会舆情和情感倾向。传统的舆情分析系统主要依赖规则匹配或浅层机器学习模型,存在语义理解不足、情感极性误判率高等问题。例如,基于SVM或LSTM的模型在处理“这波操作太秀了”等中文网络流行语时,情感分类准确率仅约72%。

百度千问大模型通过2.6万亿参数的预训练,在中文语义理解、多模态数据融合及长文本上下文关联方面展现出显著优势。其微调后模型在Weibo Sentiment 100k数据集上的F1值可达89.3%,较传统方法提升17.3个百分点。本研究将构建基于“Python+百度千问大模型”的舆情分析系统,旨在解决传统舆情分析系统在处理大规模、高时效性微博数据时面临的语义理解不足、多模态数据割裂以及预测能力缺失等问题。

(二)选题意义

  1. 提升舆情分析准确性:利用百度千问大模型强大的语义理解能力,提高对微博文本中网络流行语、方言等复杂语义的识别准确率,从而提升舆情分析的整体准确性。
  2. 实现多模态舆情分析:综合考虑微博文本、表情符号、地理位置、用户关系等多模态信息,进行全方位的舆情分析,提高分析的准确性和全面性。
  3. 增强舆情预测能力:通过构建动态舆情预测模型,实现对未来24小时舆情走势的精准预测,为政府、企业和研究机构提供科学的决策支持。
  4. 推动技术创新与发展:探索百度千问大模型在微博舆情分析领域的应用,推动自然语言处理、大数据分析等技术的创新与发展。

二、研究目标与内容

(一)研究目标

  1. 构建基于“Python+百度千问大模型”的微博舆情分析系统,实现对微博数据的实时采集、预处理、情感分析、话题聚类和舆情预测。
  2. 利用百度千问大模型提高舆情分析的准确性和效率,特别是在处理网络流行语、方言等复杂语义时的表现。
  3. 综合考虑多模态信息,实现全方位的舆情分析,并构建动态舆情预测模型,提高舆情预测的准确性。
  4. 开发用户友好的交互界面和数据展示模块,使非技术人员也能够轻松查看和分析舆情分析结果。

(二)研究内容

  1. 数据采集与预处理
    • 数据采集:利用Python编写爬虫程序,结合微博API接口和反爬虫对抗模块(如IP池+UA轮换),从微博平台抓取用户发布的相关数据,包括微博内容、评论、转发数、点赞数、地理位置、用户关系等。
    • 数据预处理:对抓取到的数据进行去重、清洗和标准化处理,去除HTML标签、特殊字符和停用词,进行中文分词和词性标注。同时,构建表情符号语义解析表,将表情符号转换为向量编码;采用PageRank算法变体评估用户影响力,综合粉丝数、互动率、认证等级计算传播权重。
  2. 多模态特征提取与融合
    • 特征提取:构建包含文本、表情符号、地理位置、用户影响力的四维特征矩阵。例如,将“👍👍👍”(3个赞)映射为情感强度值3.0,将文本内容转换为词向量表示。
    • 特征融合:采用多模态融合技术,将不同模态的特征进行融合,以提高舆情分析的准确性和全面性。
  3. 百度千问大模型微调与应用
    • 模型微调:采用LoRA(Low-Rank Adaptation)技术,将百度千问大模型参数量从2.6万亿压缩至1200万可训练参数。使用自建的150万条标注微博(含5%方言数据)作为微调数据集,对模型进行微调,以提高其在微博舆情分析任务上的性能。
    • 情感分析与主题建模:利用微调后的百度千问大模型进行情感分析和主题建模。情感分析旨在判断微博文本的情感倾向(正面、负面或中性),主题建模则用于识别微博中的热门话题及其子话题。
  4. 动态舆情预测模型构建
    • 特征工程:提取时间序列化的情感极性向量、话题热度指数、转发层级深度等核心特征,用于构建动态舆情预测模型。
    • 模型构建:采用Transformer-LSTM混合架构构建动态舆情预测模型。其中,Transformer编码器用于处理长序列依赖,LSTM解码器用于捕捉短期波动。通过输入历史舆情数据,预测未来24小时的舆情热度曲线。
  5. 系统架构设计与实现
    • 整体架构设计:设计系统的整体架构,主要包括数据采集层、预处理层、模型层和应用层。数据采集层负责从微博平台抓取数据;预处理层对数据进行清洗和特征提取;模型层包含百度千问大模型和动态舆情预测模型;应用层提供用户交互界面和数据展示模块。
    • 前端界面开发:使用Flask或Django框架搭建系统后端,结合ECharts、PyQt5等库开发前端界面,实现舆情大屏展示、预警推送等功能。
  6. 系统评估与优化
    • 评估指标选择:采用准确率、召回率、F1值等评估指标对情感分析模型的性能进行评估;采用均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)等评估指标对动态舆情预测模型的性能进行评估。
    • 实验设计与分析:设计实验方案,对比不同模型和算法的性能,分析影响舆情分析效果的因素。通过实验结果,对模型和算法进行优化和改进。
    • 系统性能优化:对系统的性能进行优化,如提高数据处理速度、减少模型推理延迟等,确保系统在高并发情况下能够稳定运行。

三、研究方法与技术路线

(一)研究方法

  1. 文献研究法:查阅国内外关于微博舆情分析、自然语言处理、深度学习等方面的相关文献,了解该领域的研究现状和发展趋势,为本文的研究提供理论支持。
  2. 实验研究法:通过实验对比不同的模型和算法在微博舆情分析任务上的性能,分析算法的优缺点,选择最优的模型或算法组合。同时,对系统进行实际运行测试,收集数据并分析系统的效果。
  3. 系统开发法:采用软件工程的方法,进行微博舆情分析系统的需求分析、设计、开发和测试。按照模块化的思想,将系统划分为不同的功能模块,逐步实现各个模块的功能,并进行集成测试和系统测试。

(二)技术路线

  1. 数据采集与预处理阶段
    • 搭建数据采集环境,编写Python爬虫程序,结合微博API接口和反爬虫对抗模块,从微博平台抓取数据。
    • 对采集到的数据进行清洗和预处理,去除噪声数据,进行中文分词和词性标注,构建特征矩阵。
  2. 模型微调与训练阶段
    • 采用LoRA技术对百度千问大模型进行微调,使用自建的标注微博数据集进行模型训练。
    • 利用微调后的模型进行情感分析和主题建模,评估模型的性能。
  3. 动态舆情预测模型构建阶段
    • 提取时间序列化的特征,构建动态舆情预测模型的数据集。
    • 采用Transformer-LSTM混合架构构建动态舆情预测模型,进行模型训练和参数优化。
  4. 系统架构设计与实现阶段
    • 设计系统的整体架构,明确各个模块的职责和接口。
    • 使用Flask或Django框架搭建系统后端,结合ECharts、PyQt5等库开发前端界面,实现系统的各项功能。
  5. 系统评估与优化阶段
    • 确定评估指标和实验方案,对系统的性能和效果进行评估。
    • 根据评估结果,对模型和算法进行优化和改进,提高系统的稳定性和可靠性。

四、研究计划与进度安排

(一)研究计划

  1. 第1 - 2周:查阅相关文献,了解微博舆情分析和自然语言处理技术的研究现状,确定研究选题和研究内容。
  2. 第3 - 4周:学习Python编程语言、百度千问大模型的使用方法以及相关的自然语言处理和深度学习技术,掌握相关的开发工具和框架。
  3. 第5 - 6周:进行数据采集与预处理,搭建数据采集环境,编写爬虫程序,清洗和处理数据,构建特征矩阵。
  4. 第7 - 8周:对百度千问大模型进行微调,使用标注微博数据集进行模型训练,评估模型的性能。
  5. 第9 - 10周:提取时间序列化的特征,构建动态舆情预测模型的数据集,采用Transformer-LSTM混合架构构建动态舆情预测模型,进行模型训练和参数优化。
  6. 第11 - 12周:设计系统的整体架构,开发系统的后端服务和前端界面,实现系统的各项功能。
  7. 第13 - 14周:对系统进行全面的评估和优化,解决系统运行过程中出现的问题。
  8. 第15 - 16周:总结研究成果,撰写毕业论文,进行论文修改和完善。

(二)进度安排

阶段时间跨度主要任务
选题与文献调研第1 - 2周确定选题,查阅文献,撰写开题报告
技术学习与数据准备第3 - 6周学习相关技术,采集和预处理数据,构建特征矩阵
模型微调与训练第7 - 8周对百度千问大模型进行微调,进行情感分析和主题建模
动态预测模型构建第9 - 10周构建动态舆情预测模型,进行模型训练和参数优化
系统架构设计与开发第11 - 12周设计系统架构,开发后端服务和前端界面
系统评估与优化第13 - 14周评估系统性能,进行优化改进
论文撰写与总结第15 - 16周总结研究成果,撰写和修改毕业论文

五、预期成果

  1. 完成一篇高质量的毕业论文,详细阐述基于“Python+百度千问大模型”的微博舆情分析预测系统的研究过程、方法、模型实现和系统开发等内容,包括系统架构设计、数据处理流程、百度千问大模型原理、动态舆情预测模型设计、系统评估结果等方面。
  2. 搭建一个基于“Python+百度千问大模型”的微博舆情分析预测系统,实现对微博数据的实时采集、预处理、情感分析、话题聚类和舆情预测,系统能够提供可视化的舆情分析结果和预警推送功能。
  3. 通过实验验证百度千问大模型和动态舆情预测模型的有效性和系统的性能优势,为微博舆情分析领域提供新的解决方案。

六、研究的创新点与可行性分析

(一)创新点

  1. 融合大模型与多模态分析:将百度千问大模型与多模态分析技术相结合,充分利用大模型在语义理解方面的优势和多模态信息在舆情分析中的价值,提高舆情分析的准确性和全面性。
  2. 动态舆情预测:构建动态舆情预测模型,实现对未来24小时舆情走势的精准预测,为政府、企业和研究机构提供科学的决策支持。
  3. 轻量化部署与实时响应:采用LoRA技术对百度千问大模型进行轻量化处理,降低模型参数量,提高模型推理速度,实现系统的实时响应和分钟级部署。

(二)可行性分析

  1. 技术可行性:Python作为一种高效的编程语言,拥有丰富的自然语言处理和深度学习库,如jieba、NLTK、TextBlob、TensorFlow、PyTorch等,为开发微博舆情分析系统提供了极大的便利。百度千问大模型提供了完善的API接口和开发文档,便于进行模型微调和应用开发。
  2. 数据可行性:微博平台提供了丰富的API接口,可以方便地获取用户发布的微博数据。同时,可以通过网络爬虫技术获取更多的微博数据,为舆情分析提供充足的数据支持。
  3. 时间可行性:根据研究计划和进度安排,在规定的时间内完成论文的选题、研究、实验、开发和撰写工作是可行的。在研究过程中,将合理安排时间,充分利用课余时间和假期,确保研究的顺利进行。

七、参考文献

[1] Devlin J, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ACL 2019.
[2] 中国信通院. 社交媒体舆情分析技术白皮书(2024).
[3] 百度飞桨团队. 千问大模型应用开发指南(2025版).
[4] 微博开放平台. API v2.0技术文档(2025).
[5] Zhang, S., et al. "Microblog Sentiment Analysis Based on BERTopic with Domain Adaptation." ACM Transactions on Social Computing(2025).
[6] [作者姓名]. [论文题目][J]. [期刊名称], [发表年份], 卷号: [起止页码]. (微博舆情分析相关研究文献)
[7] [作者姓名]. [论文题目][J]. [期刊名称], [发表年份], 卷号: [起止页码]. (自然语言处理技术在舆情分析中的应用文献)
[8] [作者姓名]. [论文题目][J]. [期刊名称], [发表年份], 卷号: [起止页码]. (深度学习模型在时序数据预测中的应用文献)

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值