计算机毕业设计Python旅游评论情感分析 NLP情感分析 LDA主题分析 bayes分类 旅游爬虫 旅游景点评论爬虫 机器学习 深度学习(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

《Python旅游评论情感分析:NLP情感分析与LDA主题分析》开题报告

一、选题背景与意义

(一)选题背景

随着互联网技术的飞速发展和旅游行业的蓬勃兴起,在线旅游平台(如携程、去哪儿、马蜂窝等)成为了游客获取旅游信息、分享旅游体验的重要渠道。游客在这些平台上留下了大量的旅游评论,这些评论蕴含着游客对旅游目的地、旅游服务、旅游产品等多方面的情感倾向和主题信息。对旅游评论进行情感分析和主题分析,不仅可以帮助旅游企业了解游客的需求和满意度,改进服务质量,还可以为其他游客提供有价值的参考,促进旅游行业的健康发展。

自然语言处理(NLP)技术为旅游评论的分析提供了有效的手段。情感分析可以判断评论者对旅游相关内容的情感倾向(积极、消极或中性),而主题分析则可以挖掘评论中讨论的主要话题。LDA(Latent Dirichlet Allocation)主题模型是一种常用的主题分析方法,能够从大量文本中自动提取潜在的主题。

(二)选题意义

  1. 理论意义:本研究将深入探讨NLP情感分析和LDA主题分析在旅游评论领域的应用,丰富和完善旅游评论分析的理论体系。通过对比不同情感分析算法和LDA主题模型参数设置对分析结果的影响,为相关领域的研究提供参考和借鉴。
  2. 实践意义:对于旅游企业而言,通过情感分析可以及时了解游客对自身服务的评价,发现存在的问题并加以改进,提高游客满意度和忠诚度。主题分析则可以帮助企业了解游客关注的热点话题,为旅游产品的开发和营销提供依据。对于游客来说,情感分析和主题分析的结果可以为其选择旅游目的地和旅游产品提供参考,避免因信息不对称而做出不满意的决策。

二、研究目标与内容

(一)研究目标

  1. 构建一个基于Python的旅游评论情感分析系统,能够准确判断评论的情感倾向。
  2. 利用LDA主题模型对旅游评论进行主题分析,提取评论中的主要话题。
  3. 分析情感倾向与主题之间的关系,为旅游企业提供有针对性的决策建议。

(二)研究内容

  1. 数据收集与预处理
    • 从在线旅游平台爬取旅游评论数据,包括评论内容、评分、发布时间等信息。
    • 对收集到的数据进行预处理,包括去除噪声数据(如广告、垃圾评论)、文本分词、去除停用词、词干提取等操作,为后续的情感分析和主题分析做准备。
  2. 情感分析
    • 研究并实现多种情感分析算法,如基于词典的情感分析方法、基于机器学习的情感分析方法(如朴素贝叶斯、支持向量机等)和基于深度学习的情感分析方法(如LSTM、BERT等)。
    • 对不同情感分析算法进行对比实验,选择最适合旅游评论情感分析的算法,并优化算法参数,提高情感分析的准确率。
  3. LDA主题分析
    • 利用Python中的Gensim等库实现LDA主题模型,对预处理后的旅游评论进行主题分析。
    • 通过调整主题数量、迭代次数等参数,优化LDA主题模型的分析结果,提取出具有代表性和实际意义的主题。
  4. 情感与主题关系分析
    • 分析不同情感倾向的评论所涉及的主题,探讨情感倾向与主题之间的关联。
    • 根据分析结果,为旅游企业提供针对性的决策建议,如针对积极情感较多的主题加强宣传和推广,针对消极情感较多的主题进行改进和优化。

三、研究方法与技术路线

(一)研究方法

  1. 文献研究法:查阅国内外关于旅游评论情感分析、主题分析以及NLP技术的相关文献,了解该领域的研究现状和发展趋势,为研究提供理论支持。
  2. 实验研究法:通过实验对比不同情感分析算法和LDA主题模型参数设置对分析结果的影响,选择最优的算法和参数。
  3. 案例分析法:选取具体的旅游企业或旅游目的地作为案例,对其旅游评论进行情感分析和主题分析,验证研究方法的可行性和有效性。

(二)技术路线

  1. 数据收集阶段
    • 使用Python的爬虫库(如Scrapy)从在线旅游平台爬取旅游评论数据,并将数据存储到数据库(如MySQL)中。
  2. 数据预处理阶段
    • 使用Python的Jieba等库进行文本分词、去除停用词等操作,将预处理后的数据保存为文本文件。
  3. 情感分析阶段
    • 分别实现基于词典、机器学习和深度学习的情感分析算法,对预处理后的评论数据进行情感分类,并计算分类准确率。
  4. LDA主题分析阶段
    • 使用Gensim库实现LDA主题模型,对情感分析后的评论数据进行主题提取,通过困惑度等指标评估主题模型的质量,调整主题数量等参数优化分析结果。
  5. 情感与主题关系分析阶段
    • 统计不同情感倾向的评论中各主题的出现频率,分析情感与主题之间的关联,撰写分析报告。

四、预期成果与创新点

(一)预期成果

  1. 完成旅游评论情感分析系统的开发,能够准确判断评论的情感倾向,情感分析准确率达到[X]%以上。
  2. 利用LDA主题模型提取出旅游评论中的主要主题,主题具有代表性和实际意义。
  3. 撰写一篇高质量的学术论文,详细阐述研究方法、实验过程和分析结果。
  4. 为旅游企业提供一份针对性的决策建议报告,帮助企业改进服务质量和优化旅游产品。

(二)创新点

  1. 综合运用多种情感分析算法,对旅游评论进行全面、准确的情感分析,提高了情感分析的准确率和可靠性。
  2. 将LDA主题分析与情感分析相结合,深入探讨情感倾向与主题之间的关系,为旅游企业提供了更细致、更有针对性的决策依据。
  3. 开发了一个基于Python的旅游评论分析系统,具有可扩展性和易用性,方便旅游企业和其他研究人员进行进一步的研究和应用。

五、研究计划与进度安排

(一)研究计划

  1. 第1 - 2个月:查阅相关文献,确定研究方法和技术路线,完成开题报告。
  2. 第3 - 4个月:收集旅游评论数据,并进行数据预处理。
  3. 第5 - 6个月:实现情感分析算法,进行实验对比和优化。
  4. 第7 - 8个月:利用LDA主题模型进行主题分析,优化主题模型参数。
  5. 第9 - 10个月:分析情感与主题之间的关系,撰写学术论文和决策建议报告。
  6. 第11 - 12个月:对研究结果进行总结和反思,完成论文答辩准备工作。

(二)进度安排

时间阶段研究任务
第1 - 2个月查阅文献,确定研究方法和技术路线,撰写开题报告
第3个月收集旅游评论数据
第4个月对收集到的数据进行预处理
第5个月实现基于词典的情感分析算法,进行实验
第6个月实现基于机器学习和深度学习的情感分析算法,进行实验对比和优化
第7个月利用LDA主题模型对评论数据进行初步主题分析
第8个月调整LDA主题模型参数,优化主题分析结果
第9个月统计不同情感倾向评论中各主题的出现频率,分析情感与主题关系
第10个月撰写学术论文和决策建议报告初稿
第11个月对学术论文和决策建议报告进行修改和完善
第12个月准备论文答辩材料,进行论文答辩

六、参考文献

[1] 赵妍妍, 秦兵, 刘挺. 文本情感分析[J]. 软件学报, 2010, 21(8): 1834 - 1848.
[2] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of machine Learning research, 2003, 3(Jan): 993 - 1022.
[3] 徐琳宏, 林鸿飞, 潘宇彤, 等. 情感词汇本体的构造[J]. 情报学报, 2008, 27(2): 306 - 311.
[4] Hochreiter S, Schmidhuber J. Long short - term memory[J]. Neural computation, 1997, 9(8): 1735 - 1780.
[5] Devlin J, Chang M W, Lee K, et al. Bert: Pre - training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). 2019: 4171 - 4186.
[6] [作者姓名]. 在线旅游评论情感分析研究[D]. [学校名称], [年份].
[7] [作者姓名]. 基于LDA主题模型的旅游评论主题挖掘研究[J]. [期刊名称], [年份], 卷号: [起止页码].

以上开题报告仅供参考,你可以根据实际研究情况进行调整和完善。在研究过程中,要严格按照研究计划执行,确保研究工作的顺利进行。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值