计算机毕业设计Hadoop+Spark民宿推荐系统 民宿可视化 大数据毕业设计(源码+LW文档+PPT+详细讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

Hadoop+Spark民宿推荐系统技术说明

一、引言

随着旅游业的蓬勃发展,民宿作为一种新兴的住宿方式,受到了越来越多游客的青睐。然而,面对海量的民宿数据和多样化的用户需求,如何高效、精准地为用户推荐符合其需求的民宿成为亟待解决的问题。Hadoop和Spark作为大数据处理领域的核心技术,具有分布式存储和计算的能力,能够高效地处理海量数据。本文将详细介绍基于Hadoop和Spark的民宿推荐系统的技术架构、数据处理流程、推荐算法及系统优势。

二、系统架构设计

(一)整体架构

基于Hadoop和Spark的民宿推荐系统采用分层架构,包含数据采集层、存储层、处理层、推荐层和应用层,如图1所示。

图1 系统整体架构图

(二)各层功能

  1. 数据采集层
    • 爬虫工具:使用Python的Scrapy或Selenium抓取民宿平台(如Airbnb、途家等)的房源信息(位置、价格、评分、图片)和用户行为数据(浏览、收藏、预订)。例如,通过Scrapy框架编写爬虫程序,设置合理的爬取规则和频率,避免对目标网站造成过大压力,同时确保数据的完整性和准确性。
    • 日志采集:通过Flume或Kafka实时收集用户操作日志,支持后续流式处理。Flume可以将分散的数据源高效地收集、聚合和传输到Hadoop集群中;Kafka则具有高吞吐量、低延迟的特点,能够满足实时数据采集的需求。
  2. 存储层
    • HDFS:分布式存储原始数据,提供高容错性和扩展性。将采集到的民宿数据和用户行为数据以文件的形式存储在HDFS中,每个文件可以包含多个数据记录,方便后续的数据处理和分析。
    • Hive:构建数据仓库,支持SQL查询和历史数据回溯。在Hive中创建表结构,将HDFS中的数据映射到Hive表中,通过HiveQL语句对数据进行查询和分析。例如,可以查询某个城市的民宿数量、平均价格等信息。
    • HBase:存储实时更新的用户画像和房源特征,支持低延迟查询。HBase是一种分布式、可扩展的列式数据库,能够快速存储和检索大量的数据。在民宿推荐系统中,可以将用户的实时行为数据和房源的实时特征信息存储在HBase中,以便在推荐过程中快速获取。
  3. 处理层
    • Spark Core:通过RDD/DataFrame API清洗数据,去除噪声(如异常评分、重复记录)。使用Spark Core提供的API对数据进行过滤、转换和聚合操作,例如去除重复的民宿记录、修正异常的价格数据等。
    • Spark SQL:执行复杂查询(如用户历史行为聚合)。利用Spark SQL的强大功能,可以对Hive表中的数据进行复杂的查询和分析,例如统计用户在不同时间段的预订行为、分析不同类型民宿的受欢迎程度等。
    • Spark MLlib:训练推荐模型(如ALS协同过滤、Word2Vec文本特征提取)。Spark MLlib提供了丰富的机器学习算法,可以用于构建民宿推荐模型。例如,使用ALS算法进行协同过滤推荐,通过分析用户-房源交互矩阵,计算用户之间的相似度和房源之间的相似度,从而为用户推荐相似的房源。
  4. 推荐层
    • 协同过滤:基于用户-房源交互矩阵,计算相似度并生成推荐列表。协同过滤算法可以分为基于用户的协同过滤和基于物品的协同过滤。在民宿推荐系统中,可以根据用户的历史预订记录和浏览行为,找到与目标用户兴趣相似的其他用户,然后将这些相似用户喜欢的民宿推荐给目标用户。
    • 深度学习:使用LSTM处理用户行为序列,捕捉短期兴趣;通过BERT分析评论情感,挖掘长期偏好。LSTM神经网络可以处理时间序列数据,能够捕捉用户行为的时间序列特征,例如用户在不同时间段的浏览和预订行为。BERT模型则可以用于分析用户的评论情感,了解用户对民宿的满意度和偏好,从而为推荐提供更全面的信息。
    • 加权融合:动态调整两种算法的权重,平衡精准度与多样性。将协同过滤算法和深度学习算法的结果进行融合,根据实际情况调整两种算法的权重,以达到最佳的推荐效果。例如,在用户行为数据较少的情况下,可以增加协同过滤算法的权重;在用户评论数据丰富的情况下,可以增加深度学习算法的权重。
  5. 应用层
    • 前端展示:使用Vue.js或React构建响应式界面,支持用户交互(如筛选、缩放)。通过前端界面,用户可以方便地浏览推荐结果、筛选房源、查看房源详情等。例如,用户可以根据价格、位置、评分等条件对推荐结果进行筛选,以便找到最符合自己需求的民宿。
    • 后端服务:使用Spring Boot或Flask提供RESTful API,与Spark集群交互。后端服务负责处理用户的请求,调用Spark集群中的推荐算法,将推荐结果返回给前端界面。同时,后端服务还可以实现用户管理、订单管理等功能。

三、数据处理流程

(一)数据采集

  1. 民宿数据采集:从各大民宿预订平台(如携程、去哪儿、Airbnb等)的API接口获取民宿信息,包括民宿名称、位置、价格、设施、评分、图片等。同时,也可以使用Python编写爬虫程序,结合Scrapy框架、Selenium、Xpath解析库等相关技术,实现对民宿数据的定向抓取。在爬取数据时,需要注意遵守目标网站的robots.txt协议,避免对网站造成过大压力。
  2. 用户行为数据采集:通过前端页面埋点的方式,收集用户的行为数据,如点击、浏览、收藏、预订等。将这些数据实时发送到Kafka消息队列中,以便后续的流式处理。

(二)数据存储

  1. 原始数据存储:将采集到的民宿数据和用户行为数据存储到HDFS中。在存储数据时,可以根据数据的类型和时间进行分区存储,方便后续的数据管理和查询。例如,按照日期将用户行为数据存储在不同的目录下。
  2. 数据仓库构建:使用Hive将HDFS中的数据映射为Hive表,构建数据仓库。根据业务需求,设计合理的表结构和分区策略,提高数据查询的效率。例如,可以按照城市、价格区间等维度对民宿数据进行分区。

(三)数据清洗与预处理

  1. 缺失值处理:使用均值填充或插值法补全价格、评分等字段的缺失值。例如,对于价格缺失的民宿,可以根据同类型民宿的平均价格进行填充。
  2. 文本清洗:通过正则表达式去除HTML标签、特殊字符,分词后构建词袋模型。对于民宿的描述信息和用户的评论信息,需要进行文本清洗和预处理,以便后续的特征提取和分析。
  3. 特征提取:提取用户特征(如历史预订记录、偏好位置、预算范围)和民宿特征(如设施类型、周边景点、评论情感得分)。例如,通过分析用户的历史预订记录,可以了解用户的偏好位置和预算范围;通过自然语言处理技术分析用户的评论,可以提取出民宿的设施类型和周边景点等信息。

(四)数据更新与维护

定期对Hive表中的数据进行更新和维护,确保数据的及时性和准确性。例如,当民宿的价格、评分等信息发生变化时,需要及时更新到Hive表中。

四、推荐算法实现

(一)协同过滤算法(ALS)

 

python

from pyspark.ml.recommendation import ALS
# 加载训练数据
training_data = spark.read.format("parquet").load("hdfs://namenode:8020/user/hive/warehouse/training_data")
# 创建ALS模型
als = ALS(userCol="user_id", itemCol="homestay_id", ratingCol="rating", coldStartStrategy="drop")
# 训练模型
model = als.fit(training_data)
# 为所有用户推荐前10个房源
recommendations = model.recommendForAllUsers(10)

ALS算法通过分解用户-房源评分矩阵,得到用户特征矩阵和房源特征矩阵。在推荐时,根据目标用户的特征向量,计算其与房源特征向量的相似度,将相似度较高的房源推荐给用户。

(二)深度学习算法(LSTM)

  1. 数据准备:将用户的历史行为数据,如浏览记录、预订记录等,按照时间顺序进行编码,作为LSTM模型的输入。例如,将每个用户的行为序列表示为一个向量序列,每个向量包含民宿的ID、价格、评分等信息。
  2. 模型训练:使用PyTorch或TensorFlow框架构建LSTM模型,定义模型的结构和参数。将准备好的数据输入到模型中进行训练,使用交叉熵损失函数和Adam优化器对模型进行优化,提高模型的准确性。
  3. 推荐生成:在训练完成后,将目标用户的行为序列输入到LSTM模型中,预测用户对不同民宿的偏好程度。根据预测结果,为用户推荐可能感兴趣的民宿。

(三)混合推荐策略

将协同过滤算法和深度学习算法的结果进行融合,采用加权平均的方式得到最终的推荐列表。根据实际情况调整两种算法的权重,以达到最佳的推荐效果。例如,可以通过A/B测试的方式,比较不同权重组合下的推荐效果,选择最优的权重。

五、系统优势

(一)高效的数据处理能力

Hadoop+Spark集群可以处理PB级数据,单次推荐任务耗时小于500ms。Spark的内存计算能力使得数据处理速度比传统的MapReduce框架有了显著提升,能够满足实时推荐的需求。

(二)高扩展性

系统支持分布式计算,横向扩展能力强。当数据量增大或用户请求增多时,可以通过增加集群节点的方式来提高系统的处理能力。

(三)精准的推荐效果

混合推荐算法结合用户历史行为和文本情感分析,推荐准确率提升20%以上。通过综合考虑多种因素,能够为用户提供更加个性化、精准的推荐结果。

(四)直观的可视化展示

集成ECharts可视化功能,支持民宿分布热力图、价格趋势分析、用户评价情感分析等多种图表类型。动态交互式图表可以帮助运营人员快速定位问题,如某区域房源价格异常;用户端可视化界面提升体验,缩短决策时间。

六、结论

基于Hadoop和Spark的民宿推荐系统通过分布式计算和混合推荐算法,实现了高效、精准的个性化推荐。该系统具有高效的数据处理能力、高扩展性、精准的推荐效果和直观的可视化展示等优势,能够为民宿平台提供从数据处理到用户交互的全流程解决方案。未来,随着大数据技术和人工智能技术的不断发展,该系统还可以进一步集成联邦学习(保护用户隐私)和强化学习(动态优化推荐策略),以适应不断变化的业务需求,推动民宿行业的数字化升级。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值