题目大意:求定起点终点的最短距离。
一样的思路,用dijkstra 存下每个节点到起点的最短距离,输出终点的最短距离即可。
代码如下:
/*Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,
每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,
而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
Sample Output
2
-1
*/
#include<stdio.h>
#include<string.h>
#define INF 100000000
int dis[205][205], r[205], p[205];//r表示点到起点的距离;p的值表示点是否被遍历,0未遍历,1遍历;
int s, t;
int M, N;
void dijkstra()
{
int i,j,k,min;
for(i = 0;i<N;i++)
{
k = -1;
min = INF;
for(j = 0;j<N;j++)
{
if(!p[j] && r[j]<min)
{
min = r[j];
k = j;
}
}
if(k == -1) break;
p[k] = 1;
for(j = 0;j<N;j++)
{
if(!p[j] && dis[k][j] != INF && r[j] > r[k] + dis[k][j])
{
r[j] = r[k] + dis[k][j];
}
}
}
}
int main()
{
int A, B, C;int i,j;
while(scanf("%d %d",&N,&M)!=EOF)//N个城市,M条路
{
for(i = 0;i < N;i++)
{
p[i] = 0;
for(j = 0;j < N;j++)
{
dis[i][j]=INF;
}
dis[i][i] = 0;
}
for(i = 0;i < M;i++)
{
scanf("%d%d%d",&A,&B,&C);
if(dis[A][B] > C)
{
dis[A][B] = dis[B][A] = C;
}
}
scanf("%d%d",&s,&t);
for(i = 0;i < N;i++)
{
r[i] = dis[s][i];
}
dijkstra();
if(r[t] == INF)printf("-1\n");
else
printf("%d\n",r[t]);
}
return 0;
}