Hdu 1874 畅通工程续

题目大意:求定起点终点的最短距离。

一样的思路,用dijkstra 存下每个节点到起点的最短距离,输出终点的最短距离即可。

代码如下:

/*Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,
每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,
而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2

Sample Output
2
-1         
*/

#include<stdio.h>
#include<string.h>
#define INF 100000000
int dis[205][205], r[205], p[205];//r表示点到起点的距离;p的值表示点是否被遍历,0未遍历,1遍历;
int s, t;
int M, N;
void dijkstra()
{
	int i,j,k,min;
	for(i = 0;i<N;i++)
	{
		k = -1;
		min = INF;
		for(j = 0;j<N;j++)
		{
			if(!p[j] && r[j]<min)
			{
				min = r[j];
				k = j;
			}
		}
		if(k == -1) break;
		p[k] = 1;
		for(j = 0;j<N;j++)
		{
			if(!p[j] && dis[k][j] != INF && r[j] > r[k] + dis[k][j])
			{
				r[j] = r[k] + dis[k][j];
			}
		}
	}
}
int main()
{
	int A, B, C;int i,j;
	while(scanf("%d %d",&N,&M)!=EOF)//N个城市,M条路
	{
	for(i = 0;i < N;i++)
	{
		p[i] = 0;
		for(j = 0;j < N;j++)
		{
			dis[i][j]=INF;
		}
		dis[i][i] = 0;
	}
	for(i = 0;i < M;i++)
	{
       scanf("%d%d%d",&A,&B,&C);
         if(dis[A][B] > C)
         {
         	dis[A][B] = dis[B][A] = C;
         }
	}
	scanf("%d%d",&s,&t);
	for(i = 0;i < N;i++)
	{
		r[i] = dis[s][i];
	}
	dijkstra();
	if(r[t] == INF)printf("-1\n");
	else
	printf("%d\n",r[t]);
	}
return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值