在其官方文档说明书上面说明了提供的几个模型:
In addition to our base Tensorflow detection model definitions, this release includes:
- A selection of trainable detection models, including:
- Single Shot Multibox Detector (SSD) with MobileNet,
- SSD with Inception V2,
- Region-Based Fully Convolutional Networks (R-FCN) with Resnet 101,
- Faster RCNN with Resnet 101,
- Faster RCNN with Inception Resnet v2
花了点时间对这个模型进行调试,里面还是有不少坑的,相信在编译过程中大家都会碰到这样那样的问题。
如问题一:proto文件的转换,这个可以见博客相关的操作http://blog.csdn.net/sparkexpert/article/details/73456767
问题二:NodeDef mentions attr 'data_format' not in Op等一串很长错误。
这个主要原因还是运行这个模型需要在tensorflow 1.2.0版本上,因此需要对tensorflow进行升级。
问题三:matplotlib的展示:见博客的操作http://blog.csdn.net/sparkexpert/article/details/73729145
因此,开始利用提供的demo进行了运行测试,效果如下所示:不得不先说的是,mobilenet效果在简单数据集上也可以,而且关键的一点是速度特别快。而faster-rcnn果然每张图片需要耗费一定的时间。
随便在网上找了几张示例图片:如https://i-blog.csdnimg.cn/blog_migrate/fd1160a3ede186ebb29346d9dbb18437.jpeg这个图片
其检测结果如下:
另外,为了测试不同模型的效果,分别对mobilenet和faster-rcnn进行了测试。故意选择了一张多场景的图片来进行测试。
选择moblienet的效果如下所示:
发现moblienet的精度效果一般,特别是对远距离的对象检测效果非常一般。
接下来测试了下faster-rcnn的效果。如下:
从图上可以看出,faster-rcnn效果比较好,不过也存在不足,就是对一张图像的检测速度明显偏慢。