import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
cfg = {
'VGG11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'VGG19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
# 模型需继承nn.Module
class VGG(nn.Module):
# 初始化参数:
def __init__(self, vgg_name):
super(VGG, self).__init__()
self.features = self._make_layers(cfg[vgg_name])
self.classifier = nn.Sequential(
nn.Linear(23040, 1024),
nn.Linear(1024, 1),
nn.Sigmoid()
)
# 模型计算时的前向过程,也就是按照这个过程进行计算
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _make_layers(self, cfg):
layers = []
in_channels = 1
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
dummy_input = torch.rand(1, 1, 484, 100)
model = VGG('VGG19')
with SummaryWriter(comment='VGG19') as w:
w.add_graph(model, (dummy_input,))
print("finish")
代码demo如上,会自动生成文件
打开anaconda prompt
tensorboard --logdir="文件地址" --host=127.0.0.1