还是tensorflow

真实的模型

在上一节中我们所用到的神经元模型与实际中的模型有所区别。
在这里插入图片描述
可以看到有一个偏置项和激活函数的区别。
在这里插入图片描述
去优化一个神经网络可以从以下几个方面入手
在这里插入图片描述
我们一个一个的讲,首先是损失函数,我们上一节用到的是均方误差函数,接下来我们用自定义损失函数来对这个现实问题进行优化
在这里插入图片描述
为了更真实一点,我们引入了一个大小在正负0.05之间的随机噪声
在这里插入图片描述
在where函数中我们要做的是去找出预测值y和已知正确数据y-中的较大值,如果是预测值大的话,相当于是预测的销量大于实际的销量,损失在成本,如果预测值小的话,相当于预测的销量小于实际的销量,损失的是利润。
在这里插入图片描述
在这里插入图片描述
之后我们来学习交叉熵的概念。
在这里插入图片描述
有点类似于方差的含义,使用clip函数的意义在于避免过小值存在出现log0,以及避免出现过大值,超出概率1。而为了使一个n分类的n个输出满足概率分布要求,就需要通过softmax函数。
在这里插入图片描述
接下来是关于学习率
在这里插入图片描述
引入它的目的在于找到一个w使得损失函数的梯度最小。代码如下
在这里插入图片描述
通过数学原理我们知道,这样的一个损失函数其最小值应该给是在w=-1的情况下。运行后发现也确实如此。
在这里插入图片描述
而当我们进入代码去修改学习率大小时,发现学习率的选择十分重要,这是把学习率修改为0.01时的结果
在这里插入图片描述
可以看到w的变化十分缓慢。改为1的时候结果为在这里插入图片描述
我们发现它压根不收敛,因此,为了选用一个合适的学习率,我们要尝试使用指数衰减的学习率。在这里插入图片描述
需要注意的是,最后的staircase项如果为True,则学习率阶梯形衰减,而False则为一条平滑曲线。
在这里插入图片描述
在这里插入图片描述
结果如下在这里插入图片描述
有的时候我们也可以用加入滑动平均的方法来进行优化,增加模型的泛化性在这里插入图片描述
在tensorflow中,我们可以用三行代码来实现这个功能
在这里插入图片描述
实际代码如下,值得注意的是,代码中tf.trainable_variables()与w1等价,因为这里可训练的参数只有一个w1在这里插入图片描述
在这里插入图片描述
可以看到在轮数增加之后,滑动平均值不断趋近于5
在这里插入图片描述
加入滑动平均值可以使得模型变得更加广泛适用,然而神经网络还可能出现得一个问题是不太能去拟合未知数据,因此我们还需要引入正则化
在这里插入图片描述
正则化的体现就在于它把losses这个所有正则化内容的和与交叉熵加起来作为新的损失函数。代码如下:

`#coding:utf-8
#0导入模块,生成模拟数据集
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
BATCH_SIZE = 30
seed = 2
#基于seed产生随机数
rdm = np.random.RandomState(seed)
#随机数返回300行2列的矩阵,表示300组数据点(x0,x1)作为输入数据集
X = rdm.randn(300,2)
#从X这个300行2列的矩阵中取出一行,判断如果两个坐标的平方和小于2,给Y赋值1,其余为0
#作为输入数据集的标签(正确答案)
Y_ =[float(x0*x0 + x1*x1<2) for (x0,x1) in X]
#遍历Y中的每个元素, 1赋值’red’其余赋值‘blue’, 这样可视化显示时人可以直观区分
Y_c = [['red' if y else 'blue'] for y in Y_]
#对数据及X和Y进行shape整理,第一个元素为-1(即为n行)表示,随第二个参数计算得到,第二个元素表示多少列,把X整理为n行2列,把Y整理为n行1列
X = np.vstack(X).reshape(-1,2)
Y_= np.vstack(Y_).reshape(-1,1)
print X
print Y_
print Y_c
#用plt.scatter画出数据集X各行中第0列元素和第一列元素的点即各行的(x0,x1),用各行Y_c对应的值表示颜色(c是color的缩写)
plt.scatter(X[:,0],X[:,1],c=np.squeeze(Y_c))
plt.show()

#定义神经网络的输入,参数和输出,定义前向传播过程
def get_weight(shape, regularizer):
	w = tf.Variable(tf. random_normal(shape),dtype=tf.float32)
	tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
	return w

def get_bias(shape):
	b = tf.Variable(tf.constant(0.01, shape=shape))
	return b
x = tf.placeholder(tf.float32, shape=(None, 2))
y_= tf.placeholder(tf.float32, shape=(None, 1))

w1 =get_weight([2,11], 0.01)
b1 =get_bias([11])
y1 =tf.nn.relu(tf.matmul(x,w1)+b1)

w2 =get_weight([11,1], 0.01)
b2 =get_bias([1])
y  =tf.matmul(y1,w2)+b2#输出层不过激活

#定义损失函数
loss_mse = tf.reduce_mean(tf.square(y-y_))#均方误差的损失函数
loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))#为均方误差的损失加上每一个w的损失
#定义反向传播方法,不含正则化
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_mse)

with tf.Session() as sess:
	init_op = tf.global_variables_initializer()
	sess.run(init_op)
	STEPS = 40000
	for i in range(STEPS):
		start = (i*BATCH_SIZE) % 300
		end = start + BATCH_SIZE
		sess.run(train_step, feed_dict={x:X[start:end], y_:Y_[start:end]})
		if i % 2000 == 0:
			loss_mse_v = sess.run(loss_mse, feed_dict={x:X,y_:Y_})
			print("After %d steps,loss is : %f"%(i, loss_mse_v))
	#xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成二维网络坐标点
	xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
	#将xx, yy拉直,并合并成一个2列的均值,得到一个网格坐标点的集合
	grid = np.c_[xx.ravel(), yy.ravel()]
	#将网格坐标点喂入神经网络,probs为输出
	probs = sess.run(y, feed_dict={x:grid})
	#probs的shape调整成xx的样子
	probs = probs.reshape(xx.shape)
	print"w1:\n",sess.run(w1)
	print"b1:\n",sess.run(b1)
	print"w2:\n",sess.run(w2)
	print"b1:\n",sess.run(b2)

plt.scatter(X[:,0],X[:,1],c=np.squeeze(Y_c))
plt.contour(xx,yy,probs,levels=[.5])
plt.show()

#定义反向传播方法:包含正则化
train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_total)

with tf.Session() as sess:
	init_op = tf.global_variables_initializer()
	sess.run(init_op)
	STEPS=40000
	for i in range(STEPS):
			start = (i*BATCH_SIZE) % 300
			end = start + BATCH_SIZE
			sess.run(train_step, feed_dict={x:X[start:end], y_:Y_[start:end]})
			if i % 2000 == 0:
				loss_v = sess.run(loss_total, feed_dict={x:X,y_:Y_})
				print("After %d steps,loss is : %f"%(i, loss_mse_v))
 #xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成二维网络坐标点
	xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
	#将xx, yy拉直,并合并成一个2列的均值,得到一个网格坐标点的集合
	grid = np.c_[xx.ravel(), yy.ravel()]
	#将网格坐标点喂入神经网络,probs为输出
	probs = sess.run(y, feed_dict={x:grid})
	#probs的shape调整成xx的样子
	probs = probs.reshape(xx.shape)
	print"w1:\n",sess.run(w1)
	print"b1:\n",sess.run(b1)
	print"w2:\n",sess.run(w2)
	print"b1:\n",sess.run(b2)

plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c))
plt.contour(xx, yy, probs, levels=[.5])
plt.show()`

通过该程序打印出的三个图形如下在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最后一个图是加入了正则化的函数,我们可以看到相比于比加入正则化的图形,更加平滑,正确率也更高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值