各个路由协议在华为与思科设备中的默认优先级(管理距离 AD值)

华为设备路由协议的默认优先级

  • 对于相同的目的地,不同的路由协议(包括静态路由)可能会发现不同的路由,但这些路由并不都是最优的。事实上,在某一时刻,到某一目的地的当前路由仅能由唯一的路由协议来决定。为了判断最优路由,各路由协议(包括静态路由)都被赋予了一个优先级,当存在多个路由信息源时,具有较高优先级(取值较小)的路由协议发现的路由将成为最优路由,并将最优路由放入本地路由表中。
  • 在华为的设备中,路由器分别定义了外部优先级和内部优先级。外部优先级是指用户可以手工为各路由协议配置的优先级,路由协议的内部优先级则不能被用户手工修改。
  • 选择路由时先比较路由的外部优先级,当不同的路由协议配置了相同的优先级后,系统会通过内部优先级决定哪个路由协议发现的路由将成为最优路由。例如,到达同一目的地10.1.1.0/24有两条路由可供选择,一条静态路由,另一条是OSPF路由,且这两条路由的外部优先级都被配置成5。这时路由器系统将根据内部优先级进行判断。因为OSPF协议的内部优先级是10,高于静态路由的内部优先级60。所以系统选择OSPF协议发现的路由作为最优路由。
路由协议的类型路由协议的外部优先级路由协议的内部优先级
直连路由(Direct)00
OSPF 内部路由1010
IS-IS 路由1515(level-1)18(level-2)
静态路由(Static)6060
RIP 路由100100
OSPF ASE 路由150150
OSPF NSSA 路由150150
IBGP 路由255200
EBGP 路由25520
  • 其中,0表示直接连接的路由,255表示任何来自不可信源端的路由;数值越小表明优先级越高。

  • 除直连路由(Direct)外,各种路由协议的优先级都可由用户手工进行配置。另外,每条静态路由的优先级都可以不相同。

  • 当有多个OSPFv2进程学习到同一目的地的路由时,而且路由的外部优先级和内部优先级都相同时,系统选择链路开销值较小的路由作为可用路由,如果链路开销值相同,则可以形成负载分担路由。

  • 当有多个IS-IS进程学习到同一目的地的路由时,而且路由的外部优先级和内部优先级都相同时,系统选择链路开销值较小的路由作为可用路由,如果链路开销值相同,则可以形成负载分担路由。

  • 当有多个RIP/RIPng进程学习到同一目的地的路由时,而且路由的外部优先级和内部优先级都相同时,系统选择链路开销值较小的路由作为可用路由,如果链路开销值相同,则可以形成负载分担路由。

思科设备路由协议的默认管理距离

  • 多数路由协议具有与其他协议不兼容的量度结构和算法。在使用多个路由协议的网络中,交换路由信息以及跨多个协议选择最佳路径的功能至关重要。

  • 管理距离(administrative distance ,AD)是在有使用两个不同路由协议的两个或多个不同的路由通往同一目标时,路由器用来选择最佳路径的功能。管理距离定义了路由协议的可靠性。每个路由协议的优先级是利用管理距离值,按照最高到最低可靠性(可信性)的顺序设定的。

  • 管理距离是当两个协议为同一目的地提供两个不同路由时,路由器用来确定使用哪个路由协议的首选标准。管理距离是路由信息源的可信度的度量。管理距离仅在本地具有重要意义,因此不会在路由更新中进行通告。

路由协议的类型默认距离值(优先级)
直连路由(Direct)0
静态路由(Static)1
增强型内部网关路由协议 (EIGRP) 汇总路由5
外部边界网关协议 (BGP)20
内部 EIGRP90
IGRP100
OSPF110
IS-IS(中间系统到中间系统)115
路由信息协议 (RIP)120
Exterior Gateway Protocol (EGP)140
按需路由 (ODR)160
外部 EIGRP170
内部 BGP200
未知*255
  • *如果管理距离是 255,则路由器不相信该路由的源,并且不会将该路由安装到路由表中。
  • 可以在路由进程子配置模式下通过 distance 命令修改协议的管理距离。此命令指定管理距离将分配给从特定路由协议获知的路由。将网络从一个路由协议迁移到另一个路由协议并且后者具有更高的管理距离时,通常会需要使用此过程。但是,更改管理距离可能会导致路由环路和黑洞。因此,更改管理距离时请务必谨慎。
### 使用 Stable Diffusion 模型生成视频的方法 为了利用 Stable Diffusion 模型创建视频内容,通常会采用一系列特定的技术流程来实现这一目标。以下是具体方法: #### 准备工作环境 确保安装并配置好必要的软件包和工具链。这包括但不限于 PyTorch 和 Hugging Face 的 Diffusers 库[^2]。 ```bash pip install torch torchvision torchaudio diffusers transformers accelerate safetensors ``` #### 加载预训练模型 通过调用 `diffusers` 中提供的 API 来加载预先训练好的 Stable Diffusion 模型实例。这些模型能够执行基于文本到图像或多帧序列的任务转换。 ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) ``` #### 定义动画参数 设置用于控制视频合成的关键变量,比如帧率、持续时间以及每秒产生的图片数量等属性。此外还需要定义场景之间的过渡效果和平滑度选项。 ```python num_inference_steps = 50 # 推理步数 guidance_scale = 7.5 # 创意指导强度 video_length_seconds = 8 # 输出视频长度(秒) frames_per_second = 24 # 帧速率 (FPS) total_frames = int(video_length_seconds * frames_per_second) ``` #### 创建连续帧序列 对于每一帧都应用相同的 prompt 或者动态调整 prompts 来构建连贯的故事线。可以引入一些变化因素使相邻两帧之间存在差异从而形成流畅的动作感。 ```python prompts = ["A beautiful landscape at sunrise"] * total_frames for i in range(total_frames): if i % 10 == 0 and i != 0: new_prompt = f"A beautiful landscape with {i//10} birds flying over it." prompts[i:] = [new_prompt]*(total_frames-i) images = [] for frame_idx in range(total_frames): image = pipeline(prompts[frame_idx], num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0] images.append(image) ``` #### 合成最终视频文件 最后一步就是把所有的静态图象拼接起来成为一个完整的 MP4 文件或者其他格式的多媒体资源。可借助第三方库如 moviepy 实现此操作。 ```python from moviepy.editor import ImageSequenceClip clip = ImageSequenceClip(images, fps=frames_per_second) output_video_path = "./generated_video.mp4" clip.write_videofile(output_video_path, codec="libx264", audio=False) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值