opencv + pytorch 环境搭建

pytorch 环境搭建


1.安装cuda https://developer.nvidia.com/cuda-downloads
2.安装cudnn https://developer.nvidia.com/rdp/cudnn-download
3.安装anaconda https://www.anaconda.com/distribution/
4.anaconda安装pytorch

conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
conda install pytorch==0.4.1 torchvision cudatoolkit=9.0 -c pytorch   #	指定版本的话
conda uninstall xxx  #卸载某个包

5.安装opencv
conda install opencv

6.完成

anaconda 源管理,添加源下载失败时候删掉就好了

conda config --show-sources            #查看当前使用源
conda config --remove channels 源名称或链接                 #删除指定源
conda config --add channels 源名称或链接                #添加指定源
  • 1
    点赞
  • 13
    收藏
  • 打赏
    打赏
  • 0
    评论
<p class="MsoNormal" style="text-align: left; line-height: 16.5pt; mso-pagination: widow-orphan; background: white;" align="left"><span lang="EN-US" style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">PyTorch</span><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">版的<span lang="EN-US">YOLOv5</span>是高性能的实时目标检测方法。 <span lang="EN-US">TensorRT</span>是针对英伟达<span lang="EN-US">GPU</span>的加速工具。本课程讲述如何使用TensorRT对<span lang="EN-US">YOLOv5进行</span>加速和部署。 <span lang="EN-US"> </span></span><span style="font-family: 微软雅黑, sans-serif;"> </span></p> <p class="MsoNormal" style="text-align: left; line-height: 16.5pt; mso-pagination: widow-orphan; background: white;" align="left"><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">本课程的<span lang="EN-US">YOLOv5</span>使用<span lang="EN-US">ultralytics/yolov5</span>,分别在<span lang="EN-US">Ubuntu</span>和<span lang="EN-US">windows10</span>系统上做TensorRT加速和部署演示。</span></p> <p class="MsoNormal" style="text-align: left; line-height: 16.5pt; mso-pagination: widow-orphan; background: white;" align="left"><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">课程内容包括:原理篇(<span lang="EN-US">YOLOv5</span>网络架构与组件、<span lang="EN-US">TensorRT</span>基础、<span lang="EN-US">TensorRT INT8</span>量化、<span lang="EN-US">tensorrtx</span>介绍、<span lang="EN-US">CUDA</span>编程方法)、实践篇(<span lang="EN-US">Ubuntu</span>和<span lang="EN-US">Windows10</span>系统上的<span lang="EN-US">TensorRT</span>部署演示)、代码解析篇(</span><span lang="EN-US" style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: Arial; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">YOLOv5</span><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: Arial; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">的<span lang="EN-US">TensorRT</span>加速的代码解析)</span><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;"> 。本课程提供注释后的<span lang="EN-US">YOLOv5</span>的</span><span lang="EN-US" style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: Arial; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">TensorRT</span><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: Arial; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">加速代码。</span><span style="font-family: 微软雅黑, sans-serif;"> </span></p> <p class="MsoNormal" style="text-align: left; line-height: 16.5pt; mso-pagination: widow-orphan; background: white;" align="left"><img src="https://img-bss.csdnimg.cn/202103252331175335.jpg" alt="课程内容" /></p> <p class="MsoNormal" style="text-align: left; line-height: 16.5pt; mso-pagination: widow-orphan; background: white;" align="left"><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">除本课程《<span lang="EN-US">YOLOv5(PyTorch)</span>目标检测实战:<span lang="EN-US">TensorRT</span>加速部署》外,本人推出了有关<span lang="EN-US">YOLOv5</span>目标检测的系列课程。请关注该系列的其它视频课程,包括:</span></p> <p class="MsoNormal" style="text-align: left; line-height: 16.5pt; mso-pagination: widow-orphan; background: white;" align="left"><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">《<span lang="EN-US">YOLOv5(PyTorch)</span>目标检测实战:训练自己的数据集》</span></p> <p class="MsoNormal" style="text-align: left; line-height: 16.5pt; mso-pagination: widow-orphan; background: white;" align="left"><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">Ubuntu系统:<span style="color: #843fa1;">https://edu.csdn.net/course/detail/30793</span></span></p> <p class="MsoNormal" style="text-align: left; line-height: 16.5pt; mso-pagination: widow-orphan; background: white;" align="left"><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">Windows系统:<span style="color: #843fa1;">https://edu.csdn.net/course/detail/30923</span></span></p> <p class="MsoNormal" style="text-align: left; line-height: 16.5pt; mso-pagination: widow-orphan; background: white;" align="left"><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">《<span lang="EN-US">YOLOv5(PyTorch)</span>目标检测:原理与源码解析》</span><span style="color: #843fa1;"><span style="color: #7c79e5; font-family: 微软雅黑, sans-serif;">https://edu.csdn.net/course/detail/31428</span></span></p> <p class="MsoNormal" style="text-align: left; line-height: 16.5pt; mso-pagination: widow-orphan; background: white;" align="left"><span style="mso-bidi-font-size: 10.5pt; font-family: '微软雅黑',sans-serif; mso-bidi-font-family: 宋体; color: black; mso-themecolor: text1; mso-font-kerning: 0pt;">《<span lang="EN-US">YOLOv5(PyTorch)</span>目标检测实战:<span lang="EN-US">Flask Web</span>部署》<span style="color: #843fa1;">https://edu.csdn.net/course/detail/31140</span></span></p>

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
评论

打赏作者

spinchao

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值