opencv + pytorch 环境搭建

pytorch 环境搭建


1.安装cuda https://developer.nvidia.com/cuda-downloads
2.安装cudnn https://developer.nvidia.com/rdp/cudnn-download
3.安装anaconda https://www.anaconda.com/distribution/
4.anaconda安装pytorch

conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
conda install pytorch==0.4.1 torchvision cudatoolkit=9.0 -c pytorch   #	指定版本的话
conda uninstall xxx  #卸载某个包

5.安装opencv
conda install opencv

6.完成

anaconda 源管理,添加源下载失败时候删掉就好了

conda config --show-sources            #查看当前使用源
conda config --remove channels 源名称或链接                 #删除指定源
conda config --add channels 源名称或链接                #添加指定源
阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 要搭建yolov5pytorch环境,您可以按照以下步骤进行: 1. 确保您的电脑已经安装了Python环境,并且版本为3.8或以上。 2. 打开命令行或终端,进入您要进行环境搭建的文件夹或目录。 3. 输入以下命令来安装yolov5pytorch: ``` pip install yolov5 ``` 4. 安装完毕后,您可以尝试运行以下命令来测试是否成功安装: ``` python -c "import yolov5; print(yolov5.__version__)" ``` 如果成功安装,命令行应该输出yolov5的版本号。 希望这些步骤可以帮助您成功搭建yolov5pytorch环境。你好!要搭建 YOLOv5 PyTorch 环境,你需要按照以下步骤操作: 1. 安装 Anaconda(如果没有安装的话),可以从官网下载对应的版本:https://www.anaconda.com/products/individual 2. 打开 Anaconda Prompt,创建一个新的 conda 环境,输入以下命令: ``` conda create --name yolov5 python=3.8 ``` 这个命令将创建一个名为 yolov5 的新环境,并指定 Python 版本为 3.8。 3. 激活 yolov5 环境,输入以下命令: ``` conda activate yolov5 ``` 4. 安装 PyTorch 和 torchvision,输入以下命令: ``` conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia ``` 5. 安装其他必要的依赖库,输入以下命令: ``` pip install opencv-python numpy matplotlib ``` 6. 下载 YOLOv5 代码,可以使用 git 命令将代码克隆到本地: ``` git clone https://github.com/ultralytics/yolov5.git ``` 7. 进入 yolov5 目录,输入以下命令: ``` cd yolov5 ``` 8. 使用以下命令启动一个 Jupyter Notebook: ``` jupyter notebook ``` 9. 在 Jupyter Notebook 中打开 yolov5 文件夹下的 train.ipynb 或者 detect.ipynb 文件,运行代码即可。 以上就是在 PyTorch搭建 YOLOv5 环境的步骤。希望这些信息对你有所帮助! ### 回答2: Yolov5是一个目标检测算法模型,以其高效、高速的特点在人工智能领域得到了广泛应用。在使用Yolov5前,需要搭建相应的PyTorch环境。本文将为大家介绍如何搭建yolov5 pytorch环境。 第一步:安装Anaconda 下载并安装Anaconda,可以前往Anaconda官网下载对应的版本进行安装。安装过程较为简单,只需要一直点击确定下一步即可完成。 第二步:创建虚拟环境 使用Anaconda套件来创建虚拟环境。输入以下命令,来创建一个PyTorch的虚拟环境: conda create -n torch_env python=3.6.8 根据自己的需要进行修改。上述命令中,创建了一个名为‘torch_env’虚拟环境,使用了 Python 3.6的版本。等待安装完成后,可以通过以下命令进入该环境: conda activate torch_env 第三步:安装PyTorch 在虚拟环境中安装PyTorch库。输入以下命令: conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch 该命令将安装PyTorch1.6版本,以及torchvision0.7版本。 第四步:安装其它依赖库 在虚拟环境中安装其它必须的Python包,如matplotlib、numpy等。输入以下命令: conda install matplotlib numpy 至此,yolov5 pytorch环境搭建完成。 总结: 通过以上步骤,可以完成yolov5 pytorch环境搭建。需要注意的是,不同的操作系统,该环境搭建的步骤有些差异,需要根据实际情况进行相应的修改。同时,在使用yolov5前,推荐先学习一些基础知识,熟练掌握该算法的使用方法和相关操作。 ### 回答3: Yolov5是一款效果出色的目标检测算法,由ultralytics团队开发,基于PyTorch框架。为了在本地电脑上运行自己的模型或修改默认的预训练权重,需要先搭建好yolov5的PyTorch环境。接下来,我将分享如何快速搭建PyTorch环境并使用yolov5。 首先,需要安装Python环境,建议安装Python3.6或更高版本,以及pip包管理器。然后,我们需要安装PyTorch,可以通过官网提供的命令来安装: ``` pip install torch torchvision torchaudio ``` 接下来,需要下载yolov5的代码和预训练权重。可以在GitHub下载,也可以使用git命令: ``` git clone https://github.com/ultralytics/yolov5.git ``` 下载完代码之后,可以运行以下命令来检查安装是否正确: ``` cd yolov5 python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/zidane.jpg ``` 如果出现“PASSED”的字样,则说明环境搭建成功。 此外,yolov5还有一些依赖项需要安装。安装方法如下: ``` pip install -r requirements.txt ``` 最后,我们可以根据具体的任务调整yolov5的配置文件和参数,以达到更好的效果。可以在yolov5/models目录下找到相应的配置文件进行调整。 以上就是yolov5 PyTorch环境搭建的流程。希望本文对您有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

spinchao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值