python:基于朴素贝叶斯算法的垃圾邮件过滤分类

目录

一、朴素贝叶斯算法

1.概述

2.推导过程

二、实现垃圾邮件过滤分类

1.垃圾邮件问题背景

2.朴素贝叶斯算法实现垃圾邮件分类的步骤

3.python实现


参考学习网址:https://blog.csdn.net/weixin_59450364/article/details/124343350

一、朴素贝叶斯算法

1.概述

       朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法 。朴素贝叶斯算法(Naive Bayesian algorithm) 是应用最为广泛的分类算法之一。

       最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier 或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。朴素贝叶斯方法是在贝叶斯算法的基础上进行了相应的简化,即假定给定目标值时属性之间相互条件独立。也就是说没有哪个属性变量对于决策结果来说占有着较大的比重,也没有哪个属性变量对于决策结果占有着较小的比重。虽然这个简化方式在一定程度上降低了贝叶斯分类算法的分类效果,但是在实际的应用场景中,极大地简化了贝叶斯方法的复杂性。

2.推导过程

二、实现垃圾邮件过滤分类

1.垃圾邮件问题背景

       垃圾邮件曾经是一个令广大网友非常头痛的问题,长期困扰着邮件运营商和用户。据官方统计,用户收到的电子邮件中80%以上是垃圾邮件。影响我们的正常网络生活而且还占取有限的可用资源;占用大量网络带宽,浪费存储空间,影响网络传输和运算速度;妖言惑众,骗人钱财,传播色情、反动等内容的垃圾邮件,已对现实社会造成严重危害。

       传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等。关键词法的过滤依据是特定的词语,(如垃圾邮件的关键词:“发票”,“贷款”,“利率”,“中奖”,“办证”,“抽奖”,“号码”,“钱”,“款”,“幸运”……等等。)但这种方法效果很不理想,而且容易规避。一是正常邮件中也可能有这些关键词,非常容易误判。二是将关键词进行变形,如“代!开-发/票”,“中奖”如果被拆成“中 ~~~ 奖”可能会识别不了。后来,直到提出了使用“贝叶斯”的方法才使得垃圾邮件的分类达到一个较好的效果,而且随着邮件数目越来越多,贝叶斯分类的效果会更加好。如果将关键词的各种变形都找出来过滤,那是无穷无尽的,而且更容易误判正常邮件。

       校验码法则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。它们的识别效果都不理想,而且很容易规避。直到2002年,Paul Graham提出使用“贝叶斯方法”过滤垃圾邮件,经过几年的工程化应用,才算解决了这个问题。而这种方法的效果,好的不可思议。此外,这种过滤方法还具有自我学习能力,会根据新收到的邮件,不断调整。收到的垃圾邮件越多,它的准确率就越高。采用的分类方法是通过多个词来判断是否为垃圾邮件,但这个概率难以估计,通过贝叶斯公式,可以转化为求垃圾邮件中这些词出现的概率。

2.朴素贝叶斯算法实现垃圾邮件分类的步骤

(1)提供样本数据(邮件样本):收集相关文本文件,在此我在网上搜集了一些 Enron Email Dataset 数据集

(2)数据读入:第一步将准备的数据文件读入

(3)准备数据(预处理):清除标点符符号、将字符串标记为单词、计算某个单词出现的次数等

(4)数据处理:建立一个集合存储所有出现的单词、统计spam和ham邮件的个数、计算先验概率(即在所有的样本邮件中垃圾邮件和正常邮件的占比)、构建一个字典存储单封邮件中的单词以及其个数

(5)测试:遍历所有的测试集、计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑、把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来、把先验加上去(P(垃圾邮件)和P(正常邮件))、最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件

3.python实现

首先准备邮件样本:

       每个enron文件夹下有两个文件夹ham和spam。ham文件夹下的txt文件为正常邮件;spam文件下的txt文件为垃圾邮件。

 

 代码:

# -*- coding: utf-8 -*-
import os
import re
import string
import math

DATA_DIR = 'enron'
target_names = ['ham', 'spam']


def get_data(DATA_DIR):
    subfolders = ['enron%d' % i for i in range(1, 7)]
    data = []
    target = []
    for subfolder in subfolders:
        # spam
        spam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))
        for spam_file in spam_files:
            with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(1)
        # ham
        ham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))
        for ham_file in ham_files:
            with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:
                data.append(f.read())
                target.append(0)
    return data, target


X, y = get_data(DATA_DIR)


class SpamDetector_1(object):
    """Implementation of Naive Bayes for binary classification"""

    # 清除空格
    def clean(self, s):
        translator = str.maketrans("", "", string.punctuation)
        return s.translate(translator)

    # 分开每个单词
    def tokenize(self, text):
        text = self.clean(text).lower()
        return re.split("\W+", text)

    # 计算某个单词出现的次数
    def get_word_counts(self, words):
        word_counts = {}
        for word in words:
            word_counts[word] = word_counts.get(word, 0.0) + 1.0
        return word_counts


class SpamDetector_2(SpamDetector_1):
    # X:data,Y:target标签(垃圾邮件或正常邮件)
    def fit(self, X, Y):
        self.num_messages = {}
        self.log_class_priors = {}
        self.word_counts = {}
        # 建立一个集合存储所有出现的单词
        self.vocab = set()
        # 统计spam和ham邮件的个数
        self.num_messages['spam'] = sum(1 for label in Y if label == 1)
        self.num_messages['ham'] = sum(1 for label in Y if label == 0)

        # 计算先验概率,即所有的邮件中,垃圾邮件和正常邮件所占的比例
        self.log_class_priors['spam'] = math.log(
            self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))
        self.log_class_priors['ham'] = math.log(
            self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))

        self.word_counts['spam'] = {}
        self.word_counts['ham'] = {}

        for x, y in zip(X, Y):
            c = 'spam' if y == 1 else 'ham'
            # 构建一部字典存储单封邮件中的单词以及其个数
            counts = self.get_word_counts(self.tokenize(x))
            for word, count in counts.items():
                if word not in self.vocab:
                    self.vocab.add(word)  # 确保self.vocab中含有所有邮件中的单词
                # 下面语句是为了计算垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。
                # c是0或1,垃圾邮件的标签
                if word not in self.word_counts[c]:
                    self.word_counts[c][word] = 0.0
                self.word_counts[c][word] += count


MNB = SpamDetector_2()
MNB.fit(X[100:], y[100:])


class SpamDetector(SpamDetector_2):
    def predict(self, X):
        result = []
        flag_1 = 0
        # 遍历所有的测试集
        for x in X:
            counts = self.get_word_counts(self.tokenize(x))  # 生成可以记录单词以及该单词出现的次数的字典
            spam_score = 0
            ham_score = 0
            flag_2 = 0
            for word, _ in counts.items():
                if word not in self.vocab:
                    continue

                # 下面计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑
                else:
                    # 该单词存在于正常邮件的训练集和垃圾邮件的训练集当中
                    if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(
                            (self.word_counts['spam'][word] + 1) / (
                                    sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(
                            (self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))
                    # 该单词存在于垃圾邮件的训练集当中,但不存在于正常邮件的训练集当中
                    if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(
                            (self.word_counts['spam'][word] + 1) / (
                                    sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(1 / (sum(self.word_counts['ham'].values()) + len(
                            self.vocab)))
                    # 该单词存在于正常邮件的训练集当中,但不存在于垃圾邮件的训练集当中
                    if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
                        log_w_given_spam = math.log(1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
                        log_w_given_ham = math.log(
                            (self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
                                self.vocab)))

                # 把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来
                spam_score += log_w_given_spam
                ham_score += log_w_given_ham

                flag_2 += 1

                # 最后,还要把先验加上去,即P(垃圾邮件)和P(正常邮件)
                spam_score += self.log_class_priors['spam']
                ham_score += self.log_class_priors['ham']

            # 最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件
            if spam_score > ham_score:
                result.append(1)
            else:
                result.append(0)

            flag_1 += 1

        return result


MNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]

accuracy = 0
for i in range(100):
    if pred[i] == true[i]:
        accuracy += 1
print(accuracy)  # 0.98

运行截图:

  • 7
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

spiritqi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值