暑假留校参加了ACM的集训,学会了不少新东西,和大家分享一道线段树的入门题吧
个人感觉线段树就是二叉搜索树,这种数据结构把一个区间划分成一些单元区间,每个单元区间都对应线段树中的一个叶结点。使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。
由于我也是看完教程做的推荐的例题,所以很自然的用了线段树这种方法。相比网上其他的教程,我觉得掌握了基本的概念,再看一下这道题的具体应用,应该就能对线段树有一个初步的认识了。
问题是这样的:
Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
Sample Output
Case 1: 6 33 59
#include <iostream>
#include <string>
using namespace std;
#define MAX_N 50000
string str;
int sum; //记录总兵数
int num[MAX_N+1]={0}; //记录各个兵营的兵数
typedef struct node
{
int left;
int right;
int data;
node* lchild;
node* rchild;
node()
{
left = right = data = 0;
}
}Tree;
Tree* CreateTree(int a,int b)//递归建树
{
Tree* r;
r = (Tree*)malloc(sizeof(Tree));
r->left = a;
r->right = b;
if(a == b)
{
r->data = num[a];
r->lchild = r->rchild = NULL;
}
else
{
int mid = (a+b)>>1;
r->lchild = CreateTree(a,mid);
r->rchild = CreateTree(mid+1,b);
r->data = r->lchild->data + r->rchild->data;
}
return r;
}
void insert(Tree* r,int a,int b)
{
if(r->left == a && r->right == a)
{
r->data += b;
return;
}
int mid = (r->left + r->right)>>1;
if(a <= mid)
{
insert(r->lchild,a,b);
}
else
{
insert(r->rchild,a,b);
}
r->data += b;
}
void find(Tree* r,int a,int b)
{
if(r->left == a && r->right == b)
{
sum += r->data;
return;
}
int mid = (r->left + r->right)>>1;
if(b<=mid)
{
find(r->lchild,a,b);
}
else if(a>mid)
{
find(r->rchild,a,b);
}
else
{
find(r->lchild,a,mid);
find(r->rchild,mid+1,b);
}
}
int main()
{
int t,n,x,y;
int i;
int ca = 0;
scanf("%d",&t);
while(t--)
{
printf("Case %d:/n",++ca);
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d",&num[i]);
}
Tree* T;
T = CreateTree(1,n);
while(cin>>str)
{
if(str == "Query")
{
sum = 0;
scanf("%d%d",&x,&y);
find(T,x,y);
printf("%d/n",sum);
}
else if(str == "Add")
{
scanf("%d%d",&x,&y);
insert(T,x,y);
}
else if(str == "Sub")
{
scanf("%d%d",&x,&y);
insert(T,x,-y);
}
else
{
break;
}
}
}
return 0;
}