使用哈夫曼算法对文件进行解压和压缩
前言:笔者是一名在读大二的学生,用哈夫曼算法对文件进行压缩和解压是老师布置的实验课作业。码这个程序花了很多时间,但是我也在其中学到了很多东西,写这种类似于工程类和写算法的程序感觉有很大的不一样。
目录
part1 原理
对文件内出现的字符进行统计,以出现的次数为关键字,建立哈夫曼树,实现对字符的编码,将字符转换成一个01序列,因为一个字符占用一个字节,8个bit, 而一个字节可以存八位的01编码,所以用位编码替换文件内的字符,既完成了文件的压缩。为了能够解码,我们要把哈夫曼树和01序列一起存进文件中。
👆👆哈夫曼树
解码时,我们将存进压缩文件里的哈夫曼树还原,通过文件里的01序列对哈夫曼树进行查找,即可还原出原文件。
part2 压缩代码实现
1.统计文件字符出现次数
👇统计文本中字符出现频率
int Count(string op, string path1, string path2, int tong[]) {
// TODO:统计文件1字符出现频率
// path1是源文件,path2是目标文件
ifstream instr(path1, ios::in | ios::binary);
unsigned int bytebuff = 0;
char ch;
while (instr.get(ch)) {
bytebuff =(int)(unsigned char)ch;
tong[bytebuff]++;
} //统计weight完成!
int LeafNumber = 0;
for (int i = 0; i <= 256; i++) {
if (tong[i] != 0)
LeafNumber++;
}
instr.close();
cerr << "Count Completed" << endl;
return LeafNumber;
}
👆使用get()一次从文件输入流里读取一个字节,相当于一个char类型。使用桶计数法统计字符出现次数。这里要用unsigned char,因为有些字符的编码是大于127的,符号位为1,不适用unsigned读出来会是负数。
2.建立哈夫曼树
struct HuffmanNode {
int info; //存
int index;
int weight;
int parent; //存
int left;
int right;
char side; //存
string BinaryCode;
friend bool operator>(HuffmanNode f1, HuffmanNode f2) {
return f1.weight > f2.weight;
}
};
👆哈夫曼树的节点信息
👇个人习惯喜欢把节点名和结构体指针换名字
typedef HuffmanNode Node;
typedef HuffmanNode *Tree;
创建哈夫曼树:
int CreatHuffmanTree(int tong[], int LeafNumber, Node HuffmanTree[]) {
// TODO:创建哈夫曼树
int k = 0;
priority_queue<Node, vector<Node>, greater<Node>> pq;
// Tree HuffmanTree = new Node[2 * LeafNumber - 1];
// 0--->LeafNumber - 1 是叶节点
// leafNumber--->2*LeafNumber - 2 是根节点
for (int i = 0; i <= 256; i++) {
if (tong[i]) {
HuffmanTree[k].info = i;
HuffmanTree[k].index = k;
HuffmanTree[k].left = HuffmanTree[k].right =
HuffmanTree[k].parent = -1;
HuffmanTree[k].weight = tong[i];
pq.push(HuffmanTree[k]);
k++;
}
}
int j = LeafNumber;
//通过优先队列构建哈夫曼树
while (pq.size() > 1) {
Node t1 = pq.top();
pq.pop();
Node t2 = pq.top();
pq.pop();
HuffmanTree[t1.index].parent = j;
HuffmanTree[t2.index].parent = j;
HuffmanTree[j].index = j;
HuffmanTree[j].parent = -1;
// cout<<HuffmanTree[j].index;
HuffmanTree[j].left = t1.index;
// cout<<HuffmanTree[j].left;
HuffmanTree[j].right = t2.index;
// cout<<HuffmanTree[j].right;
HuffmanTree[j].weight = t1.weight + t2.weight;
HuffmanTree[j].info = -127;
pq.push(HuffmanTree[j]);
j++;
}
j--;
Node HuffmanTreeHead = pq.top();
HuffmanTreeHead.parent = -127;
HuffmanTree[j] = HuffmanTreeHead;
HuffmanTree[j].info = -127;
pq.pop();
cerr << "Creat Huffman Tree Completed" << endl;
return 0;
}
这里使用了stl容器优先队列priority_queue。优先队列,其底层是用堆来实现的。队首一定是当前队列中优先级最高的那一个。
因为哈夫曼树的节点不只有一个信息, 所以要使用优先队列对出现次数weight排序,要在结构体里重载运算符
friend bool operator>(HuffmanNode f1, HuffmanNode f2) {
return f1.weight > f2.weight;
}
3.对出现的字符编码
int GetCodeNode(Node HuffmanTree[], int LeafNumber) {
for (int i = 0; i < 2 * LeafNumber - 2; i++) {
if (HuffmanTree[i].info == -127)
continue;
int IndexForSearching = i;
HuffmanTree[i].BinaryCode = "";
int j = 0;
while (HuffmanTree[IndexForSearching].parent != -127) {
j = HuffmanTree[IndexForSearching].parent;
if (HuffmanTree[j].left == IndexForSearching)
HuffmanTree[i].BinaryCode += '0';
if (HuffmanTree[j].right == IndexForSearching)
HuffmanTree[i].BinaryCode += '1';
IndexForSearching = j;
}
reverse(HuffmanTree[i].BinaryCode.begin(),
HuffmanTree[i].BinaryCode.end());
}
cerr << "Get Node Code Completed" << endl;
return 0;
}
👆目的是为了在下一步对文件进行编码的时候比较简便,但是这样会比较慢
4.按照对文件编码
string Encode(string path1, Node HuffmanTree[], int LeafNumber) {
ifstream instr(path1, ios::in | ios::binary);
char ch;
unsigned int bytebuff = 0;
int bitmask = 0x80;
string HuffmanPath = "";
while (instr.get(ch)) {
bytebuff = (int)(unsigned char)ch;
int value = bytebuff;
for (int i = 0; i < LeafNumber; i++) {
if (HuffmanTree[i].info == value) {
HuffmanPath += HuffmanTree[i].BinaryCode;
break;
}
}
}
cerr << "Encode Completed" << endl;
return HuffmanPath;
}
👆按照文件中的顺序,把文件的中的字符转换为01序列保存到字符串中。
5.把字符串里的01串转换
字符串里的0和1是以字符来存储的,一个字节存一个0或1,通过位运算,把字节里的八个位都存0和1,这样一个字节就可以存八个0和1
string SwitchStringToBinary(string HuffmanPath, int &Sign) {
// TODO:将字符串里的01序列修改为bit
// 最后一个字节要处理多余的0-->把0放后面
string BinaryPath = "";
int bytebuff = 0;
int shiftcount = 0;
for (int i = 0; i < HuffmanPath.size(); i++) {
bytebuff += (HuffmanPath[i] == '1' ? 1 : 0);
bytebuff <<= 1;
shiftcount++;
if (shiftcount == 8) {
bytebuff >>= 1;
BinaryPath += (char)bytebuff;
bytebuff = 0;
shiftcount = 0;
if (i == HuffmanPath.size() - 1)
break;
if (i + 8 > HuffmanPath.size()) {
i++;
while (i <= HuffmanPath.size() - 1) {
bytebuff += (HuffmanPath[i] == '1' ? 1 : 0);
bytebuff <<= 1;
shiftcount++;
i++;
}
bytebuff <<= 7 - shiftcount;
BinaryPath += (char)bytebuff;
}
}
}
Sign = 8 - shiftcount;
cerr << "Switch String To Binary Completed" << endl;
return BinaryPath;
}
👆这里写的时候要注意,因为我们把字符串的时候是八个八个的去读,如果字符串的长度 % 8 != 0,那么字符串的末尾是凑不齐八位的,要特殊处理,这里我把有效的01串后面全填满0,补齐8位,然后用一个Sign来标记末尾多添加了几个0,把Sign一并存入到文件当中,这样解码的时候就可以把最后多余的0给处理掉了。
6.存入文件前的准备工作
这里我遇到的问题比较多,也是程序bug出现的主要原因。我们要尽可能的存入少的信息,占用少的空间,把我们的哈夫曼树给存入文件。要存哪些信息以便解码的时候能够完整的还原出来。在尝试了许多种算法以后(文末会介绍),写出了无数多个bug,我使用了比较笨比的方法~:
存节点的 parent(父节点/母节点),side(子节点是父节点的左子节点还是右子节点),info(叶节点对应的ASCII码)
👇获取节点的side
int GetSide(Node HuffmanTree[], int LeafNumber) {
for (int i = 0; i < 2 * LeafNumber - 2; i++) {
if (i == HuffmanTree[HuffmanTree[i].parent].left)
HuffmanTree[i].side = 'l';
if (i == HuffmanTree[HuffmanTree[i].parent].right)
HuffmanTree[i].side = 'r';
}
return 0;
}
7.写入文件
int WriteToFile(string path2, Node HuffmanTree[], int LeafNumber,
string BinaryPath, int Sign) {
// path2是要写的目标文件
//打开二进制文件输出流
// ShowTable(HuffmanTree, LeafNumber);
LeafNumber -= 1;
ofstream outstr(path2, ios::binary);
outstr.write(reinterpret_cast<char *>(&Sign), sizeof(char));
outstr.write(reinterpret_cast<char *>(&LeafNumber), sizeof(char));
LeafNumber += 1;
for (int i = 0; i < LeafNumber; i++) {
//获取要写的内容的地址,转换为char*
HuffmanTree[i].parent -= LeafNumber;
outstr.write(reinterpret_cast<char *>(&HuffmanTree[i].info),
sizeof(char));
outstr.write(reinterpret_cast<char *>(&HuffmanTree[i].parent),
sizeof(char));
outstr.write(reinterpret_cast<char *>(&HuffmanTree[i].side),
sizeof(char));
}
for (int i = LeafNumber; i < 2 * LeafNumber - 1; i++) {
HuffmanTree[i].parent -= LeafNumber;
outstr.write(reinterpret_cast<char *>(&HuffmanTree[i].parent),
sizeof(char));
outstr.write(reinterpret_cast<char *>(&HuffmanTree[i].side),
sizeof(char));
}
for (int i = 0; i < BinaryPath.size(); i++) {
outstr.put(BinaryPath[i]);
}
outstr.close();
cerr << "Write To File Completed" << endl;
return 0;
}
把要写的树信息和编码一并写入文件当中,我在编码头写入了我哈夫曼树的叶节点个数LeafNumber,还有上文中提到的Sign。接着就是哈夫曼树和文件的编码。
part3.解压代码实现
写完压缩以后,解压基本上是一马平川~。但是解压会遇到很多问题,要去压缩的代码里面去改。
1.读文件
Tree ReadFile(string path1, unsigned int &LeafNumber, string &SearchPath,
int &Sign) {
// Sign是要删去末尾的几个0
ifstream instr(path1, ios::in | ios::binary);
SearchPath = "";
char ch;
instr.get(ch);
Sign = ch;
instr.get(ch);
LeafNumber = (int)(unsigned char)ch;
LeafNumber += 1;
Tree HuffmanTree = new Node[2 * LeafNumber - 1];
unsigned int num;
for (int i = 0; i < LeafNumber; i++) {
instr.get(ch);
num = (int)(unsigned char)ch;
HuffmanTree[i].info = num;
instr.get(ch);
num = (int)(unsigned char)ch;
HuffmanTree[i].parent = num + LeafNumber;
instr.get(ch);
HuffmanTree[i].side = ch;
//初始化其他信息
HuffmanTree[i].BinaryCode = "";
HuffmanTree[i].index = i;
HuffmanTree[i].left = -1;
HuffmanTree[i].right = -1;
HuffmanTree[i].weight = -1;
}
for (int i = LeafNumber; i < 2 * LeafNumber - 1; i++) {
instr.get(ch);
num = (int)(unsigned char)ch;
HuffmanTree[i].parent = num + LeafNumber;
instr.get(ch);
HuffmanTree[i].side = ch;
//初始化其他信息
HuffmanTree[i].info = -10000;
HuffmanTree[i].BinaryCode = "";
HuffmanTree[i].index = i;
HuffmanTree[i].left = -1;
HuffmanTree[i].right = -1;
HuffmanTree[i].weight = -1;
}
int bitmask = 0x80;
while (instr.get(ch)) {
num = (int)(unsigned char)ch;
while (bitmask != 0) {
if ((bitmask & num) != 0) {
SearchPath += '1';
}
if ((bitmask & num) == 0) {
SearchPath += '0';
}
bitmask >>= 1;
}
bitmask = 0x80;
}
SearchPath.erase(SearchPath.end() - Sign, SearchPath.end());
instr.close();
cerr << "Read File Completed" << endl;
return HuffmanTree;
}
👆把整个压缩文件都读完,开辟空间保存树节点空间。把文件的编码部分保存到string方便使用。记得使用Sign把编码末尾多余的0去掉。
2.还原哈夫曼树
把刚刚存入线性表的节点建立父子(母子/父女/母女)关系
int BuiltHuffmanTree(Node HuffmanTree[], int LeafNumber) {
for (int i = 0; i < 2 * LeafNumber - 2; i++) {
if (HuffmanTree[i].side == 'l') {
HuffmanTree[HuffmanTree[i].parent].left = i;
}
if (HuffmanTree[i].side == 'r') {
HuffmanTree[HuffmanTree[i].parent].right = i;
}
}
cerr << "Built Huffman Tree Completed" << endl;
return 0;
}
3.还原文件
根据字符串中的01序列,在哈夫曼树中查找,把找到的字符写入文件中就好啦!
int RestoreFile(string SearchPath, Node HuffmanTree[], string path2,
int LeafNumber) {
ofstream outstr(path2, ios::out | ios::binary);
int head = 2 * LeafNumber - 2, now = head;
for (int i = 0; i < SearchPath.size(); i++) {
if (SearchPath[i] == '0') {
now = HuffmanTree[now].left;
}
if (SearchPath[i] == '1') {
now = HuffmanTree[now].right;
}
if (HuffmanTree[now].left == -1 && HuffmanTree[now].right == -1) {
char res = HuffmanTree[now].info;
outstr.put(res);
now = head;
}
}
outstr.close();
cerr << "Restore File Completed" << endl;
return 0;
}
part4.全部代码
// writen by spln
// spln@foxmail.com
#include <bits/stdc++.h>
using namespace std;
struct HuffmanNode {
int info; //存
int index;
int weight;
int parent; //存
int left;
int right;
char side; //存
string BinaryCode;
friend bool operator>(HuffmanNode f1, HuffmanNode f2) {
return f1.weight > f2.weight;
}
};
typedef HuffmanNode Node;
typedef HuffmanNode *Tree;
int ShowHelp() {
cerr << "输入错误,请按要求进行输入:" << endl;
cerr << "-z/-x 文件名1 文件名2" << endl;
return 0;
}
class Compression {
public:
int CreatHuffmanTree(int tong[], int LeafNumber, Node HuffmanTree[]) {
// TODO:创建哈夫曼树
int k = 0;
priority_queue<Node, vector<Node>, greater<Node>> pq;
// Tree HuffmanTree = new Node[2 * LeafNumber - 1];
// 0--->LeafNumber - 1 是叶节点
// laefNumber--->2*LeafNumber - 2 是根节点
for (int i = 0; i <= 256; i++) {
if (tong[i]) {
HuffmanTree[k].info = i;
HuffmanTree[k].index = k;
HuffmanTree[k].left = HuffmanTree[k].right =
HuffmanTree[k].parent = -1;
HuffmanTree[k].weight = tong[i];
pq.push(HuffmanTree[k]);
k++;
}
}
int j = LeafNumber;
//通过优先队列构建哈夫曼树
while (pq.size() > 1) {
Node t1 = pq.top();
pq.pop();
Node t2 = pq.top();
pq.pop();
HuffmanTree[t1.index].parent = j;
HuffmanTree[t2.index].parent = j;
HuffmanTree[j].index = j;
HuffmanTree[j].parent = -1;
// cout<<HuffmanTree[j].index;
HuffmanTree[j].left = t1.index;
// cout<<HuffmanTree[j].left;
HuffmanTree[j].right = t2.index;
// cout<<HuffmanTree[j].right;
HuffmanTree[j].weight = t1.weight + t2.weight;
HuffmanTree[j].info = -127;
pq.push(HuffmanTree[j]);
j++;
}
j--;
Node HuffmanTreeHead = pq.top();
HuffmanTreeHead.parent = -127;
HuffmanTree[j] = HuffmanTreeHead;
HuffmanTree[j].info = -127;
pq.pop();
cerr << "Creat Huffman Tree Completed" << endl;
return 0;
}
int GetCodeNode(Node HuffmanTree[], int LeafNumber) {
for (int i = 0; i < 2 * LeafNumber - 2; i++) {
if (HuffmanTree[i].info == -127)
continue;
int IndexForSearching = i;
HuffmanTree[i].BinaryCode = "";
int j = 0;
while (HuffmanTree[IndexForSearching].parent != -127) {
j = HuffmanTree[IndexForSearching].parent;
if (HuffmanTree[j].left == IndexForSearching)
HuffmanTree[i].BinaryCode += '0';
if (HuffmanTree[j].right == IndexForSearching)
HuffmanTree[i].BinaryCode += '1';
IndexForSearching = j;
}
reverse(HuffmanTree[i].BinaryCode.begin(),
HuffmanTree[i].BinaryCode.end());
}
cerr << "Get Node Code Completed" << endl;
return 0;
}
string Encode(string path1, Node HuffmanTree[], int LeafNumber) {
ifstream instr(path1, ios::in | ios::binary);
char ch;
unsigned int bytebuff = 0;
int bitmask = 0x80;
string HuffmanPath = "";
while (instr.get(ch)) {
bytebuff = (int)(unsigned char)ch;
int value = bytebuff;
for (int i = 0; i < LeafNumber; i++) {
if (HuffmanTree[i].info == value) {
HuffmanPath += HuffmanTree[i].BinaryCode;
break;
}
}
}
cerr << "Encode Completed" << endl;
return HuffmanPath;
}
int ShowTable(Node HuffmanTree[], int LeafNumber) {
for (int i = 0; i < 2 * LeafNumber - 1; i++) {
cout << "i:" << i << endl;
cout << HuffmanTree[i].index << "<-index" << endl;
cout << HuffmanTree[i].info << "<-info" << endl;
cout << HuffmanTree[i].side << "<-side" << endl;
cout << HuffmanTree[i].left << "<-left" << endl;
cout << HuffmanTree[i].right << "<-right" << endl;
cout << HuffmanTree[i].parent << "<-parent" << endl;
cout << HuffmanTree[i].weight << "<-weight" << endl;
cout << HuffmanTree[i].BinaryCode << "<-code" << endl;
}
return 0;
}
int Count(string op, string path1, string path2, int tong[]) {
// TODO:统计文件1字符出现频率
// path1是源文件,path2是目标文件
ifstream instr(path1, ios::in | ios::binary);
unsigned int bytebuff = 0;
char ch;
while (instr.get(ch)) {
bytebuff =(int)(unsigned char)ch;
tong[bytebuff]++;
} //统计weight完成!
int LeafNumber = 0;
for (int i = 0; i <= 256; i++) {
if (tong[i] != 0)
LeafNumber++;
}
instr.close();
cerr << "Count Completed" << endl;
return LeafNumber;
}
//把哈夫曼树存到FinalOutputString
string SwitchStringToBinary(string HuffmanPath, int &Sign) {
// TODO:将字符串里的01序列修改为bit
// 最后一个字节要处理多余的0-->把0放后面
string BinaryPath = "";
int bytebuff = 0;
int shiftcount = 0;
for (int i = 0; i < HuffmanPath.size(); i++) {
bytebuff += (HuffmanPath[i] == '1' ? 1 : 0);
bytebuff <<= 1;
shiftcount++;
if (shiftcount == 8) {
bytebuff >>= 1;
BinaryPath += (char)bytebuff;
bytebuff = 0;
shiftcount = 0;
if (i == HuffmanPath.size() - 1)
break;
if (i + 8 > HuffmanPath.size()) {
i++;
while (i <= HuffmanPath.size() - 1) {
bytebuff += (HuffmanPath[i] == '1' ? 1 : 0);
bytebuff <<= 1;
shiftcount++;
i++;
}
bytebuff <<= 7 - shiftcount;
BinaryPath += (char)bytebuff;
}
}
}
Sign = 8 - shiftcount;
cerr << "Switch String To Binary Completed" << endl;
return BinaryPath;
}
int GetSide(Node HuffmanTree[], int LeafNumber) {
for (int i = 0; i < 2 * LeafNumber - 2; i++) {
if (i == HuffmanTree[HuffmanTree[i].parent].left)
HuffmanTree[i].side = 'l';
if (i == HuffmanTree[HuffmanTree[i].parent].right)
HuffmanTree[i].side = 'r';
}
return 0;
}
int WriteToFile(string path2, Node HuffmanTree[], int LeafNumber,
string BinaryPath, int Sign) {
// path2是要写的目标文件
//打开二进制文件输出流
// ShowTable(HuffmanTree, LeafNumber);
LeafNumber -= 1;
ofstream outstr(path2, ios::binary);
outstr.write(reinterpret_cast<char *>(&Sign), sizeof(char));
outstr.write(reinterpret_cast<char *>(&LeafNumber), sizeof(char));
LeafNumber += 1;
for (int i = 0; i < LeafNumber; i++) {
//获取要写的内容的地址,转换为char*
HuffmanTree[i].parent -= LeafNumber;
outstr.write(reinterpret_cast<char *>(&HuffmanTree[i].info),
sizeof(char));
outstr.write(reinterpret_cast<char *>(&HuffmanTree[i].parent),
sizeof(char));
outstr.write(reinterpret_cast<char *>(&HuffmanTree[i].side),
sizeof(char));
}
for (int i = LeafNumber; i < 2 * LeafNumber - 1; i++) {
HuffmanTree[i].parent -= LeafNumber;
outstr.write(reinterpret_cast<char *>(&HuffmanTree[i].parent),
sizeof(char));
outstr.write(reinterpret_cast<char *>(&HuffmanTree[i].side),
sizeof(char));
}
for (int i = 0; i < BinaryPath.size(); i++) {
outstr.put(BinaryPath[i]);
}
outstr.close();
cerr << "Write To File Completed" << endl;
return 0;
}
};
class Decompression {
public:
int ShowTable(Node HuffmanTree[], int LeafNumber) {
for (int i = 0; i < 2 * LeafNumber - 1; i++) {
cout << "i:" << i << endl;
cout << HuffmanTree[i].index << "<-index" << endl;
cout << HuffmanTree[i].info << "<-info" << endl;
cout << HuffmanTree[i].side << "<-side" << endl;
cout << HuffmanTree[i].left << "<-left" << endl;
cout << HuffmanTree[i].right << "<-right" << endl;
cout << HuffmanTree[i].parent << "<-parent" << endl;
}
return 0;
}
Tree ReadFile(string path1, unsigned int &LeafNumber, string &SearchPath,
int &Sign) {
// Sign是要删去末尾的几个0
ifstream instr(path1, ios::in | ios::binary);
SearchPath = "";
char ch;
instr.get(ch);
Sign = ch;
instr.get(ch);
LeafNumber = (int)(unsigned char)ch;
LeafNumber += 1;
Tree HuffmanTree = new Node[2 * LeafNumber - 1];
unsigned int num;
for (int i = 0; i < LeafNumber; i++) {
instr.get(ch);
num = (int)(unsigned char)ch;
HuffmanTree[i].info = num;
instr.get(ch);
num = (int)(unsigned char)ch;
HuffmanTree[i].parent = num + LeafNumber;
instr.get(ch);
HuffmanTree[i].side = ch;
//初始化其他信息
HuffmanTree[i].BinaryCode = "";
HuffmanTree[i].index = i;
HuffmanTree[i].left = -1;
HuffmanTree[i].right = -1;
HuffmanTree[i].weight = -1;
}
for (int i = LeafNumber; i < 2 * LeafNumber - 1; i++) {
instr.get(ch);
num = (int)(unsigned char)ch;
HuffmanTree[i].parent = num + LeafNumber;
instr.get(ch);
HuffmanTree[i].side = ch;
//初始化其他信息
HuffmanTree[i].info = -10000;
HuffmanTree[i].BinaryCode = "";
HuffmanTree[i].index = i;
HuffmanTree[i].left = -1;
HuffmanTree[i].right = -1;
HuffmanTree[i].weight = -1;
}
int bitmask = 0x80;
while (instr.get(ch)) {
num = (int)(unsigned char)ch;
while (bitmask != 0) {
if ((bitmask & num) != 0) {
SearchPath += '1';
}
if ((bitmask & num) == 0) {
SearchPath += '0';
}
bitmask >>= 1;
}
bitmask = 0x80;
}
SearchPath.erase(SearchPath.end() - Sign, SearchPath.end());
instr.close();
cerr << "Read File Completed" << endl;
return HuffmanTree;
}
int BuiltHuffmanTree(Node HuffmanTree[], int LeafNumber) {
for (int i = 0; i < 2 * LeafNumber - 2; i++) {
if (HuffmanTree[i].side == 'l') {
HuffmanTree[HuffmanTree[i].parent].left = i;
}
if (HuffmanTree[i].side == 'r') {
HuffmanTree[HuffmanTree[i].parent].right = i;
}
}
cerr << "Built Huffman Tree Completed" << endl;
return 0;
}
int RestoreFile(string SearchPath, Node HuffmanTree[], string path2,
int LeafNumber) {
ofstream outstr(path2, ios::out | ios::binary);
int head = 2 * LeafNumber - 2, now = head;
for (int i = 0; i < SearchPath.size(); i++) {
if (SearchPath[i] == '0') {
now = HuffmanTree[now].left;
}
if (SearchPath[i] == '1') {
now = HuffmanTree[now].right;
}
if (HuffmanTree[now].left == -1 && HuffmanTree[now].right == -1) {
char res = HuffmanTree[now].info;
outstr.put(res);
now = head;
}
}
outstr.close();
cerr << "Restore File Completed" << endl;
return 0;
}
};
//解析命令行:
int main(int argc, char *argv[]) {
// //定义类
Compression Compress;
Decompression Decompress;
if (argc != 4)
ShowHelp();
else if (stricmp(argv[1], "-z") == 0)
cerr << "Zip " << argv[2] << " to " << argv[3] << " ..." << endl;
else if (stricmp(argv[1], "-x") == 0)
cerr << "Extract " << argv[2] << " to " << argv[3] << " ..." << endl;
else {
ShowHelp();
return 0;
}
//把路径赋值给字符串
const string op = argv[1];
const string path1 = argv[2];
const string path2 = argv[3];
ifstream instr(path1, ios::in | ios::binary);
if (!instr) {
cerr << "Open File failed" << endl;
return 0;
}
//路径分配
if (op == "-z") {
// cerr << "Ziping..." << endl;
int tong[257] = {0};
int LeafNumber =
Compress.Count(op, path1, path2, tong); //统计字符出出现频率
Tree HuffmanTree = new Node[2 * LeafNumber - 1]; //初始化树
Compress.CreatHuffmanTree(tong, LeafNumber, HuffmanTree); //建树
Compress.GetSide(HuffmanTree, LeafNumber);
Compress.GetCodeNode(HuffmanTree, LeafNumber); //获得叶节点的编码
// Compress.ShowTable(HuffmanTree, LeafNumber);
string HuffmanPath =
Compress.Encode(path1, HuffmanTree, LeafNumber); //文件进行编码
int Sign;
string BinaryPath =
Compress.SwitchStringToBinary(HuffmanPath, Sign); //获得二进制串
Compress.WriteToFile(path2, HuffmanTree, LeafNumber, BinaryPath,
Sign); //把哈夫曼树写入文件
// Compress.ShowTable(HuffmanTree, LeafNumber);
cerr << "Compression Completed" << endl;
return 0;
}
else if (op == "-x") {
unsigned int LeafNumber;
int Sign;
string SearchPath;
Tree HuffmanTree =
Decompress.ReadFile(path1, LeafNumber, SearchPath, Sign);
Decompress.BuiltHuffmanTree(HuffmanTree, LeafNumber);
Decompress.RestoreFile(SearchPath, HuffmanTree, path2, LeafNumber);
// Decompress.ShowTable(HuffmanTree, LeafNumber);
cerr << "Decompress Completed" << endl;
} else
return 0;
return 0;
}
part5.写在最后
其实我写完这些代码以后我感觉我使用的一些算法并不是很好,但是如果要改的话基本上就是重构代码了,工程量巨大。
给大家介绍一个大手子同学使用的算法:不把哈夫曼树写入文件,而是把一个类似于python里字典的东西存进文件:存入每个字符对应的编码长度和编码。这样在解压的时候可以构建一个map,就可以把文件还原。
老师的算法是:直接开辟长度为512的线性表,每个节点对应的下标就是对应的ASCII码。在文件中只存入父节点,经过处理,以下标大小来区分同一个父节点的左右子节点。
欢迎技术交流!!!
如果有更好的算法欢迎讨论!
最后,放张图大家笑一笑