Kaggle入门Titanic详解

一、数据集下载

进入 https://www.kaggle.com/c/titanic 比赛页面,下载数据集.
在这里插入图片描述

二、数据集处理

import 需要用到的包

import numpy as np
import pandas as pd
import matplotlib as plt
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, TensorDataset

读取训练集和测试集,并查看训练集的前十行

dftrain_raw = pd.read_csv('dataset/train.csv')
dftest_raw = pd.read_csv('dataset/test.csv')
PassengerId = dftest_raw['PassengerId']
dftrain_raw.head(10)

在这里插入图片描述看到训练集有12个属性,筛选一下,有用的属性有Pclass, Sex, Age, Sibsp, parch, fare, Carbin, Embarked,处理数据集:

def preprocessing(dfdata):

    dfresult= pd.DataFrame()

    #Pclass
    dfPclass = pd.get_dummies(dfdata['Pclass'])
    dfPclass.columns = ['Pclass_' + str(x) for x in dfPclass.columns ]
    dfresult = pd.concat([dfresult,dfPclass],axis = 1)

    #Sex
    dfSex = pd.get_dummies(dfdata['Sex'])
    dfresult = pd.concat([dfresult,dfSex],axis = 1)

    #Age
    dfresult['Age'] = dfdata['Age'].fillna(0)
    dfresult['Age_null'] = pd.isna(dfdata['Age']).astype('int32')

    #SibSp,Parch,Fare
    dfresult['SibSp'] = dfdata['SibSp']
    dfresult['Parch'] = dfdata['Parch']
    dfresult['Fare'] = dfdata['Fare']

    #Carbin
    dfresult['Cabin_null'] =  pd.isna(dfdata['Cabin']).astype('int32')

    #Embarked
    dfEmbarked = pd.get_dummies(dfdata['Embarked'],dummy_na=True)
    dfEmbarked.columns = ['Embarked_' + str(x) for x in dfEmbarked.columns]
    dfresult = pd.concat([dfresult,dfEmbarked],axis = 1)

    return(dfresult)


处理后的结果

x_temp = preprocessing(dftrain_raw)
print(x_temp)

在这里插入图片描述
处理训练集和测试集

x_train = preprocessing(dftrain_raw).values
y_train = dftrain_raw[['Survived']].values

x_test = preprocessing(dftest_raw).values
print("x_train.shape =", x_train.shape )
print("y_train.shape =", y_train.shape )

print("x_test.shape =", x_test.shape)

在这里插入图片描述
使用Dataloader装载训练集

dl_train = DataLoader(TensorDataset(torch.tensor(x_train).float(),torch.tensor(y_train).float()),
                     shuffle = True, batch_size = 8)

三、定义网络

这里使用了简单的线性网络

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(15, 30),
            nn.ReLU(),
            nn.Linear(30, 15),
            nn.ReLU(),
            nn.Linear(15, 1),
            nn.Sigmoid(),
        )

    def forward(self, x: torch.FloatTensor):
        return self.net(x)

创建网络对象

net = Net()
print(net)

在这里插入图片描述
查看网络相关参数

from torchkeras import summary
summary(net,input_shape=(15,))

在这里插入图片描述
定义优化器和损失函数

optim = torch.optim.Adam(Net.parameters(net), lr=0.001)
Loss = nn.MSELoss()

四、训练

训练100轮

for epoch in range(100):
    loss = None
    for batch_x, batch_y in dl_train:
        y_predict = net(batch_x)
        loss = Loss(y_predict, batch_y)
        optim.zero_grad()
        loss.backward()
        optim.step()
    if (epoch % 10 == 0):
        print("epoch: %d => loss: %f" % (epoch, loss.item()))

在这里插入图片描述

五、生成输出

predict = net(torch.tensor(x_test, dtype=torch.float))
predict = predict.detach().numpy()
predict = predict.reshape(418)
print(predict.shape)
print(PassengerId.shape)
predict = np.round(predict)
predict = predict.astype(int)

生成csv文件

submission = pd.DataFrame({"PassengerId": PassengerId, "Survived": predict})
submission.to_csv("titanic-submission.csv", index=False)

六、提交

在这里插入图片描述
把csv文件提交就ok了

titanic数据集是指1912年泰坦尼克号船难的乘客名单和信息。该数据集已经成为数据分析和机器学习的经典案例,用于分析生存率和乘客特征。这个数据集可以在许多数据科学网站上找到,其中最常见的来源是Kaggle。但是,也可以在其他一些网站上找到这个数据集,如UCI Machine Learning Repository和GitHub。 UCI Machine Learning Repository提供了一组数据集,包括泰坦尼克号数据集。通过这个网站,用户可以获取所有数据集的详细介绍,并下载该数据集的CSV文件。该数据集包含891行和12列。这些列包括乘客ID、姓名、性别、年龄、船舱号、票号、票价、登船港口、座位级别和生存状态等信息。 另一个数据集网站是GitHub。Github上有许多关于泰坦尼克号数据集的开源项目,用户可以通过搜索和选择对应的数据集项目,下载泰坦尼克号数据集。这些项目中包括有关数据集中各个列的描述和分析。 Kaggle也是下载泰坦尼克号数据集的常见网站。Kaggle数据集的下载方式类似于其他数据集。用户只需访问Kaggle网站并搜索有关泰坦尼克号的数据集,即可开始下载。 总的来说,下载泰坦尼克号数据集非常容易。这个数据集是公开且易获取的,用于数据分析和机器学习的学习练习是非常合适的。通过对这个数据集的分析和研究,我们可以更好地了解泰坦尼克号的历史事件和乘客特征,也可以进一步提高数据分析和机器学习的技能水平。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值