模板

矩阵行列式

#include<iostream>
#include<cstdio>
#include<cmath>
 
using namespace std;
 
typedef __int64 lld;
 
lld a[205][205];
 
int sign;
lld N,MOD;
void solved()
{
    lld ans=1;
    for(int i=0;i<N;i++)//当前行
    {
        for(int j=i+1;j<N;j++)//当前之后的每一行,因为每一行的当前第一个数要转化成0(想想线性代数中行列式的计算)
        {
            int x=i,y=j;
            while(a[y][i])//利用gcd的方法,不停地进行辗转相除
            {
                lld t=a[x][i]/a[y][i];
 
                for(int k=i;k<N;k++)
                    a[x][k]=(a[x][k]-a[y][k]*t)%MOD;
 
                swap(x,y);
            }
            if(x!=i)//奇数次交换,则D=-D'整行交换
            {
                for(int k=0;k<N;k++)
                    swap(a[i][k],a[x][k]);
                sign^=1;
            }
        }
        if(a[i][i]==0)//斜对角中有一个0,则结果为0
        {
            cout<<0<<endl;
            return ;
        }
 
        else
            ans=ans*a[i][i]%MOD;
 
    }
 
    if(sign!=0)
        ans*=-1;
    if(ans<0)
        ans+=MOD;
    printf("%I64d\n",ans);
}
int main()
{
    int t;
    scanf("%d",&t);
 
    while(t--)
    {
        sign=0;
        scanf("%I64d%I64d",&N,&MOD);
        for(int i=0;i<N;i++)
            for(int j=0;j<N;j++)
                scanf("%I64d",&a[i][j]);
        solved();
    }
    return 0;
}

高精度模板

__int128

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 81 ; 
void input(__int128 &s)
{
	s = 0 ;
	char c= ' ' ;
	while(c > '9' || c < '0') c = getchar() ;
	while(c >= '0' && c <= '9')
	 s = s * 10 + c - '0' , c = getchar() ;
}
void output(__int128 x)
{
	if(x > 9)
	 output(x / 10) ;
	putchar(x % 10 + '0') ;
}
int n , m ;
__int128 f[MAXN][MAXN] ;
__int128 game[MAXN][MAXN] ;
__int128 solve(__int128 a[])
{
	memset(f , 0 , sizeof f) ;
	for(int len = 0 ;len <= m ;len ++)
	 for(int i = 1 ;i + len <= m ;i ++)
	  f[i][i + len] = max(2 * f[i + 1][i + len] + 2 * a[i] , 2 * f[i][i + len - 1]  + 2 * a[i + len]) ;
	return f[1][m] ;
}
__int128 ans = 0 ;
int main()
{
	cin >> n >> m ;
	for(int i = 1 ;i <= n ;i ++)
	 for(int j = 1 ;j <= m ;j ++)
	  input(game[i][j]) ;
	for(int i = 1 ;i <= n ;i ++)
	 ans += solve(game[i]) ;
	output(ans) ;
	return 0 ;
}

高精度相乘

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>

using namespace std;

const int MAXN = 85, Mod = 10000; //高精四位压缩大法好 
int n, m;
int ar[MAXN];

struct HP {
    int p[505], len;
    HP() {
        memset(p, 0, sizeof p);
        len = 0;
    } //这是构造函数,用于直接创建一个高精度变量 
    void print() {
        printf("%d", p[len]);  
        for (int i = len - 1; i > 0; i--) {  
            if (p[i] == 0) {
                printf("0000"); 
                continue;
            }
            for (int k = 10; k * p[i] < Mod; k *= 10) 
                printf("0");
            printf("%d", p[i]);
        }
    } //四位压缩的输出 
} f[MAXN][MAXN], base[MAXN], ans;

HP operator + (const HP &a, const HP &b) {
    HP c; c.len = max(a.len, b.len); int x = 0;
    for (int i = 1; i <= c.len; i++) {
        c.p[i] = a.p[i] + b.p[i] + x;
        x = c.p[i] / Mod;
        c.p[i] %= Mod;
    }
    if (x > 0)
        c.p[++c.len] = x;
    return c;
} //高精+高精 

HP operator * (const HP &a, const int &b) {
    HP c; c.len = a.len; int x = 0;
    for (int i = 1; i <= c.len; i++) {
        c.p[i] = a.p[i] * b + x;
        x = c.p[i] / Mod;
        c.p[i] %= Mod;
    }
    while (x > 0)
        c.p[++c.len] = x % Mod, x /= Mod;
    return c;
} //高精*单精 

HP max(const HP &a, const HP &b) {
    if (a.len > b.len)
        return a;
    else if (a.len < b.len)
        return b;
    for (int i = a.len; i > 0; i--)
        if (a.p[i] > b.p[i])
            return a;
        else if (a.p[i] < b.p[i])
            return b;
    return a;
} //比较取最大值 

void BaseTwo() {
    base[0].p[1] = 1, base[0].len = 1;
    for (int i = 1; i <= m + 2; i++){ //这里是m! m! m! 我TM写成n调了n年... 
        base[i] = base[i - 1] * 2;
    }
} //预处理出2的幂 

int main(void) {
    scanf("%d%d", &n, &m);
    BaseTwo();
    while (n--) {
        memset(f, 0, sizeof f);
        for (int i = 1; i <= m; i++)
            scanf("%d", &ar[i]);
        for (int i = 1; i <= m; i++)
            for (int j = m; j >= i; j--) { //因为终值是小区间,DP自然就从大区间开始 
                f[i][j] = max(f[i][j], f[i - 1][j] + base[m - j + i - 1] * ar[i - 1]); 
                f[i][j] = max(f[i][j], f[i][j + 1] + base[m - j + i - 1] * ar[j + 1]);
            } //用结构体重载运算符写起来比较自然 
        HP Max;
        for (int i = 1; i <= m; i++)
            Max = max(Max, f[i][i] + base[m] * ar[i]);
        ans = ans + Max; //记录到总答案中 
    }
    ans.print(); //输出 
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值