NLP-分布表示(distributional representation)与分布式表示(distributed representation)

分布表示关注上下文概率分布,分布式表示强调信息在向量维度上的分布。两者常用于词向量模型,如Word2vec,其中分布式模型可视为分布表示的一种形式。虽然概念有时混用,但它们在表示方式上有所区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写论文好纠结这两个东西的概念。。。现对网上查到的资料进行以下整理。。。

distributed representation&distributional representation


1.关于Manning 在2015 年深度学习暑期学校(蒙特利尔)的澄清

Distributed: A concept is represented as continuous activation levels in a number of elements. Like a dense word embedding, as opposed to 1-hot vectors.
Distributional: Meaning is represented by contexts of use. Word2vec is distributional, but so are count-based word vectors, as we use the contexts of the word to model the meaning.

含义
  • Distributed:分布式描述的是若干元素的连续表示形式,如稠密的词嵌入向量表示,与之相反的是独热向量。
  • Distributional:使用词语的上下文来表示其语义,Word2vec和基于计数的词向量表示都是分布表示,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值