有限元法求变分问题示例

v [ y ] = ∫ 0 1 ( 1 2 ( y ′ 2 + y ) ) d x 取 极 值 v[y]=\int_{0}^{1}\left(\frac{1}{2}( y^{\prime 2}+y)\right) d x \quad 取极值 v[y]=01(21(y2+y))dx
y ( 0 ) = 0 , y ( 1 ) = 1 y(0)=0, y(1)=1 y(0)=0,y(1)=1
第一步:区域剖分
将 自变量x的取值区域[0,1],以步长h,剖分为n份,等分点 x 0 = 0 , x 1 , x 2 , . . . , x n = 1 x_0=0,x_1,x_2,...,x_n=1 x0=0,x1,x2,...,xn=1,其中 x i − x 1 − 1 = h = 1 n x_{i}-x_{1-1}=h=\frac{1}{n} xix11=h=n1, 如下图所示,令n=4, 则 h = 1 4 h=\frac{1}{4} h=41
其中, y 0 = y ( x 0 ) = 0 , y 4 = y ( x 4 ) = 1 y_0=y(x_0)=0, y_4=y(x_4)=1 y0=y(x0)=0,y4=y(x4)=1, y 1 , y 2 , y 3 y_1,y_2,y_3 y1,y2,y3为待求的未知量。
第二步,选择插值函数(插值函数有很多种定义方式,具体参见数值分析等相关教材)
插值函数及其导数:
y i ( x ) = y i − y i − 1 h ( x − x i − 1 ) + y i − 1 y_{i}(x)=\frac{y_{i}-y_{i-1}}{h}\left(x-x_{i-1}\right)+y_{i-1} yi(x)=hyiyi1(xxi1)+yi1
y i ′ ( x ) = y i − y i − 1 h y_{i}^{\prime}(x)=\frac{y_{i}-y_{i-1}}{h} yi(x)=hyiyi1
第三步,单元分析
将整个的积分 v [ y ] = ∫ 0 1 ( 1 2 y ′ 2 + y ) d x v[y]=\int_{0}^{1}\left(\frac{1}{2} y^{\prime 2}+y\right) d x \quad v[y]=01(21y2+y)dx 分解为各个单元的积分
v i ( y ) = ∫ x i − 1 x i 1 2 ( y ′ 2 + y ) d x = ∫ x i − 1 x i 1 2 { [ y i ′ ( x ) ] 2 + y i ( x ) } d x v_{i}(y)=\int_{x_{i-1}}^{x_i} \frac{1}{2}\left(y^{\prime2}+y\right) d x=\int_{x_{i-1}}^{x_i} \frac{1}{2}\left\{\left[y_{i}{\prime}(x)\right]^{2}+y_{i}(x)\right\} d x vi(y)=xi1xi21(y2+y)dx=xi1xi21{[yi(x)]2+yi(x)}dx
将插值函数代入,并求积分可得:
v i ( y ) = 1 2 h ( y i − y i − 1 ) 2 + h 2 ( y i + y i − 1 ) v_{i}(y)=\frac{1}{2 h}\left(y_{i}-y_{i-1}\right)^{2}+\frac{h}{2}\left(y_{i}+y_{i-1}\right) vi(y)=2h1(yiyi1)2+2h(yi+yi1)
将此表示为 v i ( y ) = v i ( y i , y i − 1 ) v_{i}(y)=v_{i}\left(y_{i}, y_{i-1}\right) vi(y)=vi(yi,yi1)
具体的4个单元积分为:
v 1 ( y ) = 1 2 h ( y 1 − y 0 ) 2 + h 2 ( y 1 + y 0 ) v_{1}(y)=\frac{1}{2 h}\left(y_{1}-y_{0}\right)^{2}+\frac{h}{2}\left(y_{1}+y_{0}\right) v1(y)=2h1(y1y0)2+2h(y1+y0)
v 2 ( y ) = 1 2 h ( y 2 − y 1 ) 2 + h 2 ( y 2 + y 1 ) v_{2}(y)=\frac{1}{2 h}\left(y_{2}-y_{1}\right)^{2}+\frac{h}{2}\left(y_{2}+y_{1}\right) v2(y)=2h1(y2y1)2+2h(y2+y1)
v 3 ( y ) = 1 2 h ( y 3 − y 2 ) 2 + h 2 ( y 3 + y 2 ) v_{3}(y)=\frac{1}{2 h}\left(y_{3}-y_{2}\right)^{2}+\frac{h}{2}\left(y_{3}+y_{2}\right) v3(y)=2h1(y3y2)2+2h(y3+y2)
v 4 ( y ) = 1 2 h ( y 4 − y 3 ) 2 + h 2 ( y 4 + y 3 ) v_{4}(y)=\frac{1}{2 h}\left(y_{4}-y_{3}\right)^{2}+\frac{h}{2}\left(y_{4}+y_{3}\right) v4(y)=2h1(y4y3)2+2h(y4+y3)
第四步:总体合成
将各个单元积分合并成为总体:
v [ y ] = ∫ 0 1 ( 1 2 y ′ 2 + y ) d x = ∑ i = 1 n v i ( y ) = ∑ i = 1 n v i ( y i , y i − 1 ) v[y]=\int_{0}^{1}\left(\frac{1}{2} y^{\prime2}+y\right) d x=\sum_{i=1}^{n} v_{i}(y)=\sum_{i=1}^{n} v_{i}\left(y_{i}, y_{i-1}\right) v[y]=01(21y2+y)dx=i=1nvi(y)=i=1nvi(yi,yi1)
第五步:求偏导,泛函 v [ y ] v[y] v[y]取极值,相当于多元函数 v ( y 1 , y 2 , . . . , y n − 1 ) v(y_1,y_2,...,y_{n-1}) v(y1,y2,...,yn1)取极值。
∂ v ( y 1 , y 2 , ⋯   , y n − 1 ) ∂ y i = 0 ( i = 1 , 2 , ⋯   , n − 1 ) \frac{\partial v\left(y_{1}, y_{2}, \cdots, y_{n-1}\right)}{\partial y_{i}}=0 \quad(i=1,2, \cdots, n-1) yiv(y1,y2,,yn1)=0(i=1,2,,n1)
具体展开为:
∂ v ∂ y 1 = ∂ v 1 ∂ y 1 + ∂ v 2 ∂ y 1 = 4 ( 0 + 2 y 1 − y 2 ) + 1 4 = 0 \frac{\partial v}{\partial y_1}= \frac{\partial v_1}{\partial y_1} + \frac{\partial v_2}{\partial y_1} = 4\left(0+2 y_{1}-y_{2}\right)+\frac{1}{4}=0 y1v=y1v1+y1v2=4(0+2y1y2)+41=0
∂ v ∂ y 2 = ∂ v 2 ∂ y 2 + ∂ v 3 ∂ y 2 = 4 ( − y 1 + 2 y 2 − y 3 ) + 1 4 = 0 \frac{\partial v}{\partial y_2}= \frac{\partial v_2}{\partial y_2} + \frac{\partial v_3}{\partial y_2} = 4\left(-y_{1}+2 y_{2}-y_{3}\right)+\frac{1}{4}=0 y2v=y2v2+y2v3=4(y1+2y2y3)+41=0
∂ v ∂ y 3 = ∂ v 3 ∂ y 3 + ∂ v 4 ∂ y 3 = 4 ( − y 2 + 2 y 3 − 1 ) + 1 4 = 0 \frac{\partial v}{\partial y_3}= \frac{\partial v_3}{\partial y_3} + \frac{\partial v_4}{\partial y_3} = 4\left(-y_{2}+2 y_{3}-1\right)+\frac{1}{4}=0 y3v=y3v3+y3v4=4(y2+2y31)+41=0
对上述方程组整理后,可得:
[ 2 − 1 0 − 1 2 − 1 0 − 1 2 ] [ y 1 y 2 y 3 ] = [ − 1 16 − 1 16 15 16 ] \left[\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{r}-\frac{1}{16} \\ -\frac{1}{16} \\ \frac{15}{16}\end{array}\right] 210121012y1y2y3=1611611615

解线性方程组,得到最终结果为:
y 1 = 0.15625 , y 2 = 0.375 , y 3 = 0.65625 y_1=0.15625,y_2=0.375,y_3=0.65625 y1=0.15625,y2=0.375,y3=0.65625

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

摘自:地球物理中的有限元法–徐世浙

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值