地球物理反问题的非唯一性和局部平均

0

对于线性的反问题 G m = d \mathbf{Gm=d} Gm=d,有三种不同的方法求解:

  • 长度理论
  • 广义逆
  • 概率密度

上述三种方法从不同的角度出发,但其推导的最终结果是相同的。而且,对于反问题可以从向量空间的角度来进行考虑,这一观点对于上述三种方法均是适用的,用向量空间可以更容易和形象的去探索非唯一性的本质。

1 非唯一性和零向量的关系

假设,反问题 G m = d \mathbf{Gm=d} Gm=d的解不是唯一的(非唯一性),那么必然至少存在两个不同的解,记为 m ( 1 ) , m ( 2 ) ( m ( 1 ) ≠ m ( 2 ) ) \mathbf{m^{(1)},m^{(2)}(m^{(1)}{\neq}m^{(2)})} m(1),m(2)(m(1)=m(2)),则这两个解均满足方程:
G m ( 1 ) = d G m ( 2 ) = d \begin{array}{l} \mathbf{G m}^{(1)}=\mathbf{d} \\ \mathbf{G} \mathbf{m}^{(2)}=\mathbf{d} \end{array} Gm(1)=dGm(2)=d
那么,两式做差得到
G ( m ( 1 ) − m ( 2 ) ) = 0 \mathbf{G}\left(\mathbf{m}^{(1)}-\mathbf{m}^{(2)}\right)=0 G(m(1)m(2))=0
所以,存在零向量 m n u l l = m ( 1 ) − m ( 2 ) \mathbf{m^{null}=m^{(1)}-m^{(2)}} mnull=m(1)m(2) m n u l l \mathbf{m^{null}} mnull是非零的)。
那么,齐次方程 G m = 0 \mathbf{Gm=0} Gm=0存在非平凡解。
反过来也是正确的,假设齐次方程 G m = 0 \mathbf{Gm=0} Gm=0存在非平凡解 m n u l l \mathbf{m^{null}} mnull,那么存在多个满足以下形式的解(以两个为例):
m ( 1 ) = m + α 1 m n u l l \mathbf{m^{(1)}=m+\alpha_1m^{null}} m(1)=m+α1mnull
m ( 2 ) = m + α 2 m n u l l \mathbf{m^{(2)}=m+\alpha_2m^{null}} m(2)=m+α2mnull
则有,
G m ( 1 ) = d G m ( 2 ) = d \begin{array}{l} \mathbf{G m}^{(1)}=\mathbf{d} \\ \mathbf{G} \mathbf{m}^{(2)}=\mathbf{d} \end{array} Gm(1)=dGm(2)=d
所以,反问题 G m = d \mathbf{Gm=d} Gm=d的解是不唯一的。

从以上的论述可知,反问题的非唯一性意味着存在零向量

如果一个给定的反问题具有 q q q个不同的零解,那么解的一般形式为:
m g e n = m p a r + ∑ i = 1 q α i m n u l l ( i ) \mathbf{m}^{\mathrm{gen}}=\mathbf{m}^{\mathrm{par}}+\sum_{i=1}^{q} \alpha_{i} \mathbf{m}^{\mathrm{null}(i)} mgen=mpar+i=1qαimnull(i)
其中, 0 ≤ q ≤ M 0\leq{q}\leq{M} 0qM M M M为模型参数的个数,也就是说线性不相关的零向量的数量不会多于未知量(模型参数)的数量。

简单反问题的零向量,举例
如下一个非常简单的方程,该方程表明数据是对四个模型参数均值的测量:
G m = [ 1 4 1 4 1 4 1 4 ] [ m 1 m 2 m 3 m 4 ] = [ d 1 ] \mathbf{G} \mathbf{m}=\left[\begin{array}{llll} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{array}\right]\left[\begin{array}{l} m_{1} \\ m_{2} \\ m_{3} \\ m_{4} \end{array}\right]=\left[d_{1}\right] Gm=[41414141]m1m2m3m4=[d1]
这个方程的一个明显的解(实际上,这是最小长度解)是
m = [ d 1 , d 1 , d 1 , d 1 ] T \mathbf{m}=[d_1,d_1,d_1,d_1]^{T} m=[d1,d1,d1,d1]T
有三个线性无关的零解:
m null  ( 1 ) = [ 1 − 1 0 0 ] m null  ( 2 ) = [ 1 0 − 1 0 ] m null  ( 3 ) = [ 1 0 0 − 1 ] \mathbf{m}^{\text {null }(1)}=\left[\begin{array}{r} 1 \\ -1 \\ 0 \\ 0 \end{array}\right] \quad \mathbf{m}^{\text {null }(2)}=\left[\begin{array}{r} 1 \\ 0 \\ -1 \\ 0 \end{array}\right] \quad \mathbf{m}^{\text {null }(3)}=\left[\begin{array}{r} 1 \\ 0 \\ 0 \\ -1 \end{array}\right] mnull (1)=1100mnull (2)=1010mnull (3)=1001
那么,一般解是:
m g e n = [ d 1 d 1 d 1 d 1 ] + α 1 [ 1 − 1 0 0 ] + α 2 [ 1 0 − 1 0 ] + α 3 [ 1 0 0 − 1 ] \mathbf{m}^{\mathrm{gen}}=\left[\begin{array}{c} d_{1} \\ d_{1} \\ d_{1} \\ d_{1} \end{array}\right]+\alpha_{1}\left[\begin{array}{r} 1 \\ -1 \\ 0 \\ 0 \end{array}\right]+\alpha_{2}\left[\begin{array}{r} 1 \\ 0 \\ -1 \\ 0 \end{array}\right]+\alpha_{3}\left[\begin{array}{r} 1 \\ 0 \\ 0 \\ -1 \end{array}\right] mgen=d1d1d1d1+α11100+α21010+α31001
如果选择最小化解的长度 ∥ m ∥ 2 \|\mathbf{m}\|_2 m2,则获得最小长度解。从一般解很明显可以看出,最小长度解从来不包括任何零向量。但需要注意的是,如果使用解的简单程度的其他定义(如平直度/光滑度),那么这些解将包含零向量。

2 模型参数的局部平均

模型参数的求解有两种方法:

  • 估计模型参数 m \mathbf{m} m的元素
  • 估计模型参数的平均 ⟨ m ⟩ = a T m \left \langle{m}\right \rangle=\mathbf{a^Tm} m=aTm

对于模型参数的平均 ⟨ m ⟩ = a T m \left \langle{m}\right \rangle=\mathbf{a^Tm} m=aTm,其中 a T \mathbf{a^T} aT的作用就是在模型参数向量中选取某些元素,并取平均。如果这个“平均向量”大部分是由 0 0 0构成,非零元素仅“聚集在某个局部”,那么这个平均是局部的。
例如,当 M = 8 M=8 M=8,平均向量 a = [ 0 , 0 , 1 / 4 , 1 / 2 , 1 / 4 , 0 , 0 , 0 ] a=[0,0,1/4,1/2,1/4,0,0,0] a=[0,0,1/4,1/2,1/4,0,0,0],是关于三个模型参数的局部平均。注意,平均向量通常要归一化从而使它的元素之和为单位 1 1 1

估计模型参数平均值而不估计直接估计模型参数本身的优势在于,即使模型参数本身是非唯一的,也有可能识别唯一的平均值。
如:
⟨ m ⟩ = a T m g e n = a T m p a r + ∑ i = 1 q α i a T m n u l l ( i ) \langle\mathrm{m}\rangle=\mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{gen}}=\mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{par}}+\sum_{i=1}^{q} \alpha_{i} \mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{null}(i)} m=aTmgen=aTmpar+i=1qαiaTmnull(i)
如果 a T m n u l l ( i ) = 0 , i = 1 , 2 , ⋯   , q \mathbf{a}^{\mathrm{T}} \mathbf{m}^{\mathrm{null}(i)}=0,i=1,2,\cdots,q aTmnull(i)=0,i=1,2,,q,那么 ⟨ m ⟩ \langle\mathrm{m}\rangle m是唯一的,平均的过程完全移除了问题的非唯一性。
a \mathbf{a} a拥有 M M M个元素,并且存在 q q q个约束施加在 a \mathbf{a} a上,那么总可以找到至少一个向量与零向量抵消(或湮灭)。尽管如此,人们无法保证平均向量在某个特定模型参数周围是局部的。但是,如果 q < M q<M q<M,那么在选择 a \mathbf{a} a时将拥有一定的自由度,并且存在一定的可能性使平均向量至少在某种程度上是局部的。这是否能够实现取决于零向量的结构,它反过来又依赖于数据核 G \mathbf{G} G的结构。模型的小尺度特征在许多问题中是不可求解的,所以经常求解唯一的局部平均。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值