Emgu 学习笔记(二)---图像二值化,自适应阈值化,Otsu二值化

本文介绍了在Emgu库中进行图像二值化和自适应阈值化的操作,包括Threshold()函数的使用以及AdaptiveThreshold()函数的参数解释。通过代码示例展示了如何实现不同类型的阈值处理,如MeanC和GaussianC方法,以适应图像不同区域的阈值需求。最终呈现了处理效果。
摘要由CSDN通过智能技术生成

图像二值化,自适应阈值化,Otsu二值化

Emgu灰度化、二值化操作方法和OpenCV中区别不大,Threshold()来实现的。

自适应阈值是整幅图像使用一个阈值,自适应阈值是图像的不同区域使用不同的阈值,而这个阈值是对整个区域计算出来的。在Emgu中也是调用函数AdaptiveThreshold()来实现的。

public static AdaptiveThreshold(IInputArray src,IOutputArray dst,double maxValue,AdaptiveThresholdType adativeType,ThresholdType thresholdType,int blockSize,double param1)

AdaptiveThresholdType adativeType:自适应阈值计算方法:MeanC和GaussianC

ThresholdType thresholdType:必须为二值化阈值化或者是反二值化阈值化(Binary/BinaryInv)

int blockSize:计算使用的区域矩阵大小:3,5,7,9


<

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值