视频编解码技术-3: H.264和VP9压缩效率和编码时延

一、引言

在前作《H.264和VP9视频编码质量评估》中,我们通过PSNR、SSIM等指标分析了二者在固定码率下的质量差异。本文聚焦实时应用场景的核心矛盾:在相同主观质量下,如何权衡压缩效率与编码延迟?

为此,本文采用“恒定量化参数(Constant QP)”的码率控制模式,为H.264(QP范围:0~51)和VP9(QP范围:0~63)设置等效质量档位,使用CIF(352×288)和1080P(1920×1080)视频序列,从以下维度展开对比:
1. 压缩效率:相同QP下码率节省能力
2. 编码延迟:单帧处理时间与端到端延迟

神旗视讯 -- 免费高性能的私有化音视频系统

二、测试配置

1、测试硬件配置

CPU:Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz,4核

GPU:无

2、编码器版本

OpenH264:2.6.0

VP9:V1.5.0

3、选取恒定质量的码率控制模式:

编码器H.264VP9
码率控制模式参数-rc 0--end-usage=q

4、选取三组典型QP组合:

质量等级

H.264 QP

VP9 QP

预期PSNR(dB)

223338-42
284034-48
344830-34

5、选取分辨率一低一高的两个源视频素材,分辨率分别为CIF和1080P。

源视频

分辨率

帧率

akiyo_cif.y4m352x28830
sunflower_1080p25.y4m1920x108025

三、实验结果与分析


1. 压缩效率对比(相同QP下的码率差异)

分辨率

QP等级

H.264码率(kbps)

VP9码率(kbps)

码率节省率

CIF1309031%
1080P2700180033%

结论:在等效QP下,VP9的码率节省优势显著(平均32%),且高低分辨率表现较一致。

2. 编码延迟对比(单位:ms/帧)

分辨率

编码器

低级质量

中级质量

高级质量

CIFH.2640.60.70.8
CIFVP92.83.54.2
1080PH.26418.420.122.6
1080PVP982.992.4105.6

发现:
- VP9延迟随QP降低而增加,H.264延迟波动较小
- 1080P下VP9延迟是H.264的4.6~5.6倍

3. 实时性临界点计算

假设系统要求单帧处理时间 ≤ 33ms(对应30fps实时性):
- OpenH264:可支持1080P实时性(22.6ms < 33ms)
- VP9:难以支持1080P实时性

四、结论

在恒定量化参数模式下,VP9展现出比H.264更优的压缩效率(平均节省32%码率),但其编码延迟在1080P分辨率下达到H.264的4.6倍以上。

实时系统设计需遵循以下原则:
1. 高分辨率强实时场景:优先选择H.264并适当放宽QP
2. 带宽敏感中低分辨率场景:VP9在可接受延迟范围内优势明显
3. 异构计算融合:通过GPU加速弥补VP9的实时性缺陷

神旗视讯开源地址: 

国内: https://gitee.com/sqmeeting

神旗视讯 -- 免费高性能的私有化音视频系统

世界上最快的VP9视频解码器 As before , I was very excited when Google released VP9 – for one, because I was one of the people involved in creating it back when I worked for Google (I no longer do). How good is it, and how much better can it be? To evaluate that question, Clément Bœsch and I set out to write a VP9 decoder from scratch for FFmpeg. The goals never changed from the original ffvp8 situation (community-developed, fast, free from the beginning). We also wanted to answer new questions: how does a well-written decoder compare, speed-wise, with a well-written decoder for other codecs? TLDR (see rest of post for details): as a codec, VP9 is quite impressive – it beats x264 in many cases. However, the encoder is slow, very slow. At higher speed settings, the quality gain melts away. This seems to be similar to what people report about HEVC (using e.g. x265 as an encoder). single-threaded decoding speed of libvpx isn’t great. FFvp9 beats it by 25-50% on a variety of machines. FFvp9 is somewhat slower than ffvp8, and somewhat faster than ffh264 decoding speed (for files encoded to matching SSIM scores). Multi-threading performance in libvpx is deplorable, it gains virtually nothing from its loopfilter-mt algorithm. FFvp9 multi-threading gains nearly as much as ffh264/ffvp8 multithreading, but there’s a cap (material-, settings- and resolution-dependent, we found it to be around 3 threads in one of our clips although it’s typically higher) after which further threads don’t cause any more gain. The codec itself To start, we did some tests on the encoder itself. The direct goal here was to identify bitrates at which encodings would give matching SSIM-scores so we could do same-quality decoder performance measurements. However, as such, it also allows us to compare encoder performance in itself. We used settings very close to recommended settings forVP8,VP9andx264, optimized for SSIM as a metric. As source clips, we chose Sintel (1920×1080 CGI content, source ), a 2-minute clip from Tears of Steel (1920×800 cinematic content, source ), and a 3-minute clip from Enter the Void (1920×818 high-grain/noise content,screenshot). For each, we encoded at various bitrates and plotted effective bitrate versus SSIM . sintel_ssimtos_ssimetv_ssim You’ll notice that in most cases, VP9 can indeed beat x264, but, there’s some big caveats: VP9 encoding (using libvpx) is horrendously slow – like, 50x slower than VP8/x264 encoding. This means that encoding a 3-minute 1080p clip takes several days on a high-end machine. Higher –cpu-used=X parameters make the quality gains melt away. libvpx’ VP9 encodes miss the target bitrates by a long shot (100% off) for the ETV clip, possibly because of our use of –aq-mode=1. libvpx tends to slowly crumble at higher bitrates for hard content – again, look at the ETV clip, where x264 shows some serious mature killer instinct at the high bitrate end of things. Overall, these results are promising, although the lack-of-speed is a serious issue. Decoder performance For decoding performance measurements, we chose (Sintel)500 (VP9), 1200 (VP8) and 700 (x264) kbps (SSIM=19.8); Tears of Steel4.0 (VP9), 7.9 (VP8) and 6.3 (x264) mbps (SSIM=19.2); and Enter the Void 9.7 (VP9), 16.6 (VP8) and 10.7 (x264) mbps (SSIM=16.2). We used FFmpeg to decode each of these files, either using the built-in decoder (to compare between codecs), or using libvpx-vp9 (to compare ffvp9 versus libvpx). Decoding time was measured in seconds using “time ffmpeg -threads 1 [-c:v libvpx-vp9] -i $file -f null -v 0 -nostats – 2>&1 | grep user”, with this FFmpeg and this libvpx revision (downloaded on Feb 20th, 2014). sintel_archs tos_archsetv_archs A few notes on ffvp9 vs. libvpx-vp9 performance: ffvp9 beats libvpx consistently by 25-50%. In practice, this means that typical middle- to high-end hardware will be able to playback 4K content using ffvp9, but not using libvpx. Low-end hardware will struggle to playback even 720p content using libvpx (but do so fine using ffvp9). on Haswell, the difference is significantly smaller than on sandybridge, likely because libvpx has some AVX2 optimizations (e.g. for MC and loop filtering), whereas ffvp9 doesn’t have that yet; this means this difference might grow over time as ffvp9 gets AVX2 optimizations also. on the Atom, the differences are significantly smaller than on other systems; the reason for this is likely that we haven’t done any significant work on Atom-performance yet. Atom has unusually large latencies between GPRs and XMM registers, which means you need to take special care in ordering your instructions to prevent unnecessary halts – we haven’t done anything in that area yet (for ffvp9). Some users may find that ffvp9 is a lot slower than advertised on 32bit; this is correct, most of our SIMD only works on 64bit machines. If you have 32bit software, port it to 64bit. Can’t port it? Ditch it. Nobody owns 32bit x86 hardware anymore these days. So how does VP9 decoding performance compare to that of other codecs? There’s basically two ways to measure this: same-bitrate (e.g. a 500kbps VP8 file vs. a 500kbps VP9 file, where the VP9 file likely looks much better), or same-quality (e.g. a VP8 file with SSIM=19.2 vs. a VP9 file with SSIM=19.2, where the VP9 file likely has a much lower bitrate). We did same-quality measurements, and found: ffvp9 tends to beat ffh264 by a tiny bit (10%), except on Atom (which is likely because ffh264 has received more Atom-specific attention than ffvp9). ffvp9 tends to be quite a bit slower than ffvp8 (15%), although the massive bitrate differences in Enter the Void actually makes it win for that clip (by about 15%, except on Atom). Given that Google promised VP9 would be no more than 40% more complex than VP8, it seems they kept that promise. we did some same-bitrate comparisons, and found that x264 and ffvp9 are essentially identical in that scenario (with x264 having slightly lower SSIM scores); vp8 tends to be about 50% faster, but looks significantly worse. Multithreading One of the killer-features in FFmpeg is frame-level multithreading, which allows multiple cores to decode different video frames in parallel. Libvpx also supports multithreading. So which is better?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值