LeetCode 238. Product of Array Except Self

Description

Given an array of n integers where n>1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].

Solve it without division and in O(n) .

For example, given [1,2,3,4], return [24,12,8,6].

Analysis

Avoid repeatitive multiple. Therefore, set two arrays to storage the forward or backward results. The formula is

ForwardProduct[i]={ForwardProduct[i1]×nums[i]nums[0](i=1,...n2)(i=0)

BackwardProduct[i]={BackwardProduct[i+1]×nums[i+1]nums[n1](i=0,...n3)(i=n2)

Code

class Solution {
public:
    vector<int> productExceptSelf(vector<int>& nums) {

        // pf(i):forward product from nums[0] to nums[i]
        // pb(i):back product from nums[n-1] downto nums[i+1]

        int n = nums.size();
        vector<int> pf(n-1),pb(n-1),result;

        pf[0]=nums[0];
        pb[n-2]=nums[n-1];
        for (int i=1;i<n-1;i++){
            pf[i]=pf[i-1]*nums[i];
        }
        for (int i=n-3;i>=0;i--){
            pb[i]=pb[i+1]*nums[i+1];
        }

        result.push_back(pb[0]);
        for (int i=1;i<n-1;i++){
            result.push_back(pf[i-1]*pb[i]);
        }
        result.push_back(pf[n-2]);
        return result;
    }
};

Appendix

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值