Description
Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a “rotation function” F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Analysis
没有必要频繁循环移位并求乘积和,观察可得
Fi−Fi−1=∑m=0size−1am−size∗asize−i−1
这样运算会方便很多。
Code
class Solution {
public:
int maxRotateFunction(vector<int>& A) {
int m = 0, sum = 0, n = A.size();
for (int i = 0; i < n; i++){
m += i * A[i];
sum += A[i];
}
int last = m;
for (int i = 0; i < n; i++){
last += sum - A[n - i - 1] * n;
m = max(m, last);
}
return m;
}
};
Appendix
- Link: https://leetcode.com/problems/rotate-function/
- Run Time: 9ms