小希的迷宫
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 23418 Accepted Submission(s): 7186
Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1
Sample Output
Yes Yes No
Author
Gardon
Source
解题思路:
这题的本质是判断一个图是否有环,且根节点是否只有一个。如果无环且根节点只有一个则输出'YES“,反之输出NO。需要注意的是给出的图数字并不是连续的,也就是说有的数字并没有出现,因此需要vis数组来记录哪些数字出现过,哪些没有出现过,这样是为了后面查找根节点的个数做准备,因为没有出现过的数字经初始化以后自己本身也是根节点,不能算。
代码:
#include <iostream>
#include <string.h>
using namespace std;
const int N=100003;
int parent[N];
bool vis[N];//用来记录哪些数字出现过
bool loop;//用来判断图中是否会出现环
void init(int n)
{
for(int i=1;i<=n;i++)
parent[i]=i;
}
int find(int x)
{
return parent[x]==x?x:find(parent[x]);
}
void unite(int x,int y)
{
x=find(x);
y=find(y);
if(x==y)
{
loop=1;//有环
return ;
}
parent[x]=y;
}
int main()
{
int x,y;
int count;
while(cin>>x>>y&&x!=-1&&y!=-1)
{
int max=0;//用来记录出现的最大数字
loop=0;
memset(vis,0,sizeof(vis));
vis[x]=1;vis[y]=1;//出现过,记录
if(max<x)max=x;
if(max<y)max=y;
if(x==0&&y==0)//空图
{
cout<<"Yes"<<endl;
continue;
}
init(N-1);//一定不能写成N,数组越界
unite(x,y);//合并
while(cin>>x>>y&&(x||y))
{
if(max<x)max=x;
if(max<y)max=y;
vis[x]=1;
vis[y]=1;
unite(x,y);//合并
}
count=0;//用来记录根节点的个数
for(int i=1;i<=max;i++)
{
if(parent[i]==i&&vis[i]==1)//别忘了vis[i]=1,因为有的数字没有出现,也满足自己的编号就是根节点的编号
count++;
}
if(!loop&&count==1)//两个条件,无环且根节点只有一个
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
return 0;
}