[BestCoder Round #6] hdu 4981 Goffi and Median (水题)

Goffi and Median




Problem Description
  
  
A median in a sequence with the length of n is an element which occupies position number n+12 after we sort the elements in the non-decreasing order (the elements are numbered starting with 1). A median of an array (2, 6, 1, 2, 3) is the number 2, and a median of array (0, 96, 17, 23) — the number 17.

An average of a sequence is the sum of sequence divided the size of the sequence.

Goffi likes median very much and he hates average number. So if a sequence's average number is larger than or equal to the median of sequence, Goffi will hate the sequence. Otherwise, Goffi will like it.

Now, your are given a sequence. Please find whether Goffi will like it or hate it.
 
Input
  
  
Input contains multiple test cases (less than 100). For each test case, the first line contains an integer n ( 1n1000 ), indicating the size of the sequence. Then in the next line, there are n integers a1,a2,,an ( 1ai1000 ), seperated by one space.
 
Output
  
  
For each case, if Goffi like the sequence, output "YES" in a line. Otherwise, output "NO".
 
Sample Input
  
  
5 1 2 3 4 5 4 1 5 6 6
 
Sample Output
  
  
NO YES
题意:

判断数字序列的中位数和平均数哪个大。

代码:

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <queue>
#include <stack>
using namespace std;
const int maxn=1010;
int num[maxn];
int n;

int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        double ave;
        double sum=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&num[i]);
            sum+=num[i];
        }
        sort(num+1,num+1+n);
        int mid=(n+1)/2;
        ave=sum/n;
        if(ave>=num[mid])
            printf("NO\n");
        else
            printf("YES\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值