C++---背包模型---货币系统1(每日一道算法2023.3.21)

注意事项:
本题为"dp动态规划—完全背包"的扩展题,和“背包模型—买书”的解法基本相同,dp思路和优化思路这里就不多讲。

题目:
给你一个n种面值的货币系统,求组成面值为m的货币有多少种方案。

输入格式
第一行,包含两个整数n和m。
接下来n行,每行包含一个整数,表示一种货币的面值。

输出格式
共一行,包含一个整数,表示方案数。

数据范围
n≤15,m≤3000

输入:
3 10
1
2
5
输出:
10
#include <cmath>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

typedef long long LL;
const int N = 3010;
int n, m;
int v[N];
LL f[N][N];         //需要开long long,否则爆int,具体原因是可以看作是组合数问题来求,C15 3000,遇到最坏情况long long也会爆掉

int main() {
    cin >> n >> m;
    for (int i =1; i<=n; i++) cin >> v[i];

    f[0][0] = 1;    //选0个面值总和为0的方案也算一个方案
    //朴素版完全背包,这里可以优化为一维双循环,具体看完全背包那篇文章,有详解
    for (int i = 1; i<=n; i++) {
        for (int j = 0; j<=m; j++) {
            for (int k = 0; k*v[i]<=j; k++) {
                f[i][j] += f[i-1][j-k*v[i]];
            }
        }
    }
    cout << f[n][m];
    return 0;
}

思路:
这道题唯一需要注意的点就是数据范围,可以用组合数的方式来算出来最坏情况下应该是C(15, 3000),long long都存不下,还好数据卡的不是那么死(

如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!

声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值