注意事项:
本题为"dp动态规划—完全背包"的扩展题,和“背包模型—买书”的解法基本相同,dp思路和优化思路这里就不多讲。
题目:
给你一个n种面值的货币系统,求组成面值为m的货币有多少种方案。
输入格式
第一行,包含两个整数n和m。
接下来n行,每行包含一个整数,表示一种货币的面值。
输出格式
共一行,包含一个整数,表示方案数。
数据范围
n≤15,m≤3000
输入:
3 10
1
2
5
输出:
10
#include <cmath>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 3010;
int n, m;
int v[N];
LL f[N][N]; //需要开long long,否则爆int,具体原因是可以看作是组合数问题来求,C15 3000,遇到最坏情况long long也会爆掉
int main() {
cin >> n >> m;
for (int i =1; i<=n; i++) cin >> v[i];
f[0][0] = 1; //选0个面值总和为0的方案也算一个方案
//朴素版完全背包,这里可以优化为一维双循环,具体看完全背包那篇文章,有详解
for (int i = 1; i<=n; i++) {
for (int j = 0; j<=m; j++) {
for (int k = 0; k*v[i]<=j; k++) {
f[i][j] += f[i-1][j-k*v[i]];
}
}
}
cout << f[n][m];
return 0;
}
思路:
这道题唯一需要注意的点就是数据范围,可以用组合数的方式来算出来最坏情况下应该是C(15, 3000),long long都存不下,还好数据卡的不是那么死(
如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!
声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流