C++---状态压缩dp---愤怒的小鸟(每日一道算法2023.4.19)

文章介绍了一种基于状态压缩动态规划的方法来解决一个涉及抛物线路径和小猪消灭的游戏关卡问题。玩家需找到最少数量的小鸟发射策略以消除所有小猪。题目涉及到动态规划、二进制状态表示和浮点数比较。解决方案包括预处理所有可能的抛物线,然后通过动态规划找到覆盖所有小猪的最小抛物线条数。
摘要由CSDN通过智能技术生成

注意事项:
难度警告!这题在NOIP中也算偏难的题,量力而行。
本题为"状态压缩dp—最短Hamilton路径"的扩展题,建议先阅读这篇文章并理解。
本题是"重复覆盖问题"可以使用"Dancing Links"做,但我们这里是用的状态压缩dp来写。

题目:
Kiana 最近沉迷于一款神奇的游戏无法自拔。   
简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, 小鸟们的飞行轨迹均为形如 y=ax2+bx 的曲线,其中 a,b 是 Kiana 指定的参数,且必须满足 a<0。
当小鸟落回地面(即 x 轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有 n 只绿色的小猪,其中第 i 只小猪所在的坐标为 (xi,yi)。 
如果某只小鸟的飞行轨迹经过了 (xi, yi),那么第 i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行; 
如果一只小鸟的飞行轨迹没有经过 (xi, yi),那么这只小鸟飞行的全过程就不会对第 i 只小猪产生任何影响。

例如,若两只小猪分别位于 (1,3) 和 (3,3),Kiana 可以选择发射一只飞行轨迹为 y=−x2+4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。 
这款神奇游戏的每个关卡对 Kiana 来说都很难,所以 Kiana 还输入了一些神秘的指令,使得自己能更轻松地完成这个这个游戏。   
这些指令将在输入格式中详述。

假设这款游戏一共有 T 个关卡,现在 Kiana 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。  
由于她不会算,所以希望由你告诉她。

输入格式
第一行包含一个正整数 T,表示游戏的关卡总数。
下面依次输入这 T 个关卡的信息。
每个关卡第一行包含两个非负整数 n,m,分别表示该关卡中的小猪数量和 Kiana 输入的神秘指令类型。
接下来的 n 行中,第 i 行包含两个正实数 (xi,yi),表示第 i 只小猪坐标为 (xi,yi),数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果 m=0,表示 Kiana 输入了一个没有任何作用的指令。
如果 m=1,则这个关卡将会满足:至多用 ⌈n/3+1⌉ 只小鸟即可消灭所有小猪。
如果 m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 ⌊n/3⌋ 只小猪。

保证 1≤n≤18,0≤m≤2,0<xi,yi<10,输入中的实数均保留到小数点后两位。
上文中,符号 ⌈c⌉ 和 ⌊c⌋ 分别表示对 c 向上取整和向下取整,例如 :⌈2.1⌉=⌈2.9⌉=⌈3.0⌉=⌊3.0⌋=⌊3.1⌋=⌊3.9⌋=3。

输出格式
对每个关卡依次输出一行答案。
输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。

输入:
2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00
输出:
1
1
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;

typedef pair<double, double> PDD;
const int N = 20, M = 1 << 20;
int n, m, T;                        //T组数据,n为每组的小猪数量,m为询问的神秘指令类型(但其实没用到)
int path[N][N];                     //path[i][j]为 由点i和j生成的抛物线所组成的点集(除了i和j可能也同时包含其他点),
int f[M];                           //f[i]为"当前点集覆盖状态为i的方案,属性为min(抛物线数量)"
PDD ver[N];                         //存储每个点的x和y值

int compare_float(double a, double b) {    //判断两个浮点数是否相同(c++的浮点数可能存在很小的误差)
    if (fabs(a - b) < 1e-8) return 0;
    if (a > b) return 1;
    return -1;
}

int main() {
    cin >> T;
    while (T -- ) {
        //读入每组数据
        cin >> n >> m;
        for (int i = 0; i<n; i++) cin >> ver[i].first >> ver[i].second;

        //预处理所有可能的抛物线,n个点,每两个点确认一条抛物线,所以是n^2条
        memset(path, 0, sizeof path);
        for (int i = 0; i<n; i++) {
            path[i][i] = 1 << i;            //穿过点i的直线必然会穿过点i
            for (int j = 0; j<n; j++) {
                double x1 = ver[i].first, y1 = ver[i].second;
                double x2 = ver[j].first, y2 = ver[j].second;
                if (compare_float(x1, x2) == 0) continue;  //单独一个点无法生成抛物线

                //计算y = ax^2 + bx中 a和b的值
                double a = (y1/x1 - y2/x2) / (x1 - x2);
                double b = (y1/x1) - (a*x1);
                if (compare_float(a, 0.0) >= 0) continue;   //抛物线的开口只能朝下,需要满足a<0

                //对于当前根据a和b生成的抛物线,求出该抛物线都穿过了哪些点,做成点集(二进制)
                for (int k = 0; k<n; k++) {
                    double x = ver[k].first, y = ver[k].second;
                    if (compare_float(y, a*x*x + b*x) == 0) path[i][j] += (1 << k);
                }
            }
        }

        //dp
        memset(f, 0x3f, sizeof f);
        f[0] = 0;   //初始化,点集状态为0时,抛物线数量为0,是合法方案
        for (int i = 0; (i+1) < (1 << n); i++) {   //枚举所有状态(如果全部为1就说明已经找到结果,不需要再做更新了)

            //找到任意一个没有被抛物线覆盖掉的点x(也就是在点集中为0)
            int x = 0;
            for (int j = 0; j<n; j++) {
                if ((i >> j & 1) == 0) {
                    x = j;
                    break;
                }
            }

            //枚举所有能覆盖掉点x的抛物线, 并更新状态
            for (int j = 0; j<n; j++) {
                int pre = (i | path[x][j]);
                f[pre] = min(f[pre], f[i] + 1);
            }
        }
        cout << f[(1<<n) - 1] << endl;      //全部为1的点集(每个小猪都被抛物线覆盖,且抛物线数量最少)即为答案
    }

    return 0;
}

思路:
基本思路就是先求出所有的可能的抛物线,再对每个抛物线进行状态更新。

一般抛物线方程:y = ax^2+bx+c,而题目中的抛物线有两个特点:
1.过原点(0,0), 即 c = 0
2.开口向下,即 a < 0
也就是说只要我们有两个点,就能计算出a和b的值,因此最多有 n^2个不同的抛物线:请添加图片描述

经典的y式dp法:
1.状态表示
f[i]: 当前点集覆盖为状态i的方案,属性为min(抛物线数量)。

(状态为 i 指的是二进制来表示当前抛物线覆盖小猪的状况,状压dp的常用手段,1表示被覆盖了,0表示未覆盖)

2.状态计算
状态转移:f[i | path[x][j]] = min(f[i | path[x][j]], f[i] + 1)

f[i] 表示能覆盖 i 状态的最小抛物线数量,而此时的 i 状态,还没覆盖 x 点。

path[x][j] 是由 点x和点j 组成的抛物线二进制点集,一定可以覆盖 点x,当然也可能包括其它点。

等于说在 f[i] 这些抛物线中再加入 path[x][j] 这条抛物线,则 点x 即被覆盖。

f[i | path[x][j]] 就是将新加入的这条 path[x][j] 抛物线所能覆盖的点和 f[i] 原有这些抛物线所能覆盖的点取并集,二进制下就是 “或” 运算。

如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!

声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值