图的连通性问题-并查集
Description
图论中有一个基本的问题,那就是一个无向图的连通性判别问题,今天我们就来讨论这个问题,我们知道,在计算机中一张图可以有两种表示方法,一是邻接矩阵二是邻接表,其中的邻接矩阵表示方法,我们已经在课堂上介绍最小生成树问题时讨论过,今天我们就来讨论用邻接表表示的图的连通性问题。要求用并查集方法求解。
Input
本问题有多组测试数据,每组测试数据有两部分,第一部分只有一行,是两个正整数,分别表示图的节点数N(节点编号从1到N,1<=N<=100)和图的边数E;第二部分共有E行,每行也是两个整数N1,N2(1<=N1,N2<=N),分别表示N1和N2之间有一条边。
Output
对于每一组测试数据,输出只有一行,如果是连通图,那么输出“Yes”,否则输出“No”。
Sample Input
6 10
1 2
1 3
1 4
1 5
1 6
2 3
2 4
3 4
3 5
3 6
4 3
1 2
1 3
2 3
Sample Output
Yes
No
#include<iostream>
using namespace std;
#define MAXN 1001
int nFather[MAXN],nSize[MAXN];
void vMakeSet(int nS);
int nFindID(int nX);
void nUnion(int nA,int nB);
bool bCheck(int nS);
int main()
{
int i,u,v,n,e;
while(cin>>n>>e)
{
vMakeSet(n);
for(i=1;i<=e;i++)
{
cin>>u>>v;
nUnion(u,v);
}
if(bCheck(n))
{
cout<<"Yes"<<endl;
}
else
{
cout<<"No"<<endl;
}
}
return 0;
}
void vMakeSet(int nS)
{
int i;
for(i=1;i<=nS;i++)
{
nFather[i]=i;
nSize[i]=1;
}
}
int nFindID(int nX)
{
if(nFather[nX]!=nX)
{
nFather[nX]=nFindID(nFather[nX]);
}
return nFather[nX];
}
void nUnion(int nA,int nB)
{
int nX,nY;
nX=nFindID(nA);
nY=nFindID(nB);
if(nX!=nY)
{
if(nSize[nX]<=nSize[nY])
{
nFather[nX]=nY;
nSize[nY]+=nSize[nX];
}
else
{
nFather[nY]=nX;
nSize[nX]+=nSize[nY];
}
}
}
bool bCheck(int nS)
{
int i;
for(i=1;i<=nS;i++)
{
nFather[i]=nFindID(i);
if(nFather[i]!=nFather[1])
{
return false;
}
}
return true;
}