图的连通性问题-并查集

图的连通性问题-并查集
Description
图论中有一个基本的问题,那就是一个无向图的连通性判别问题,今天我们就来讨论这个问题,我们知道,在计算机中一张图可以有两种表示方法,一是邻接矩阵二是邻接表,其中的邻接矩阵表示方法,我们已经在课堂上介绍最小生成树问题时讨论过,今天我们就来讨论用邻接表表示的图的连通性问题。要求用并查集方法求解。

Input
本问题有多组测试数据,每组测试数据有两部分,第一部分只有一行,是两个正整数,分别表示图的节点数N(节点编号从1到N,1<=N<=100)和图的边数E;第二部分共有E行,每行也是两个整数N1,N2(1<=N1,N2<=N),分别表示N1和N2之间有一条边。

Output
对于每一组测试数据,输出只有一行,如果是连通图,那么输出“Yes”,否则输出“No”。

Sample Input
6 10
1 2
1 3
1 4
1 5
1 6
2 3
2 4
3 4
3 5
3 6
4 3
1 2
1 3
2 3
Sample Output
Yes
No

#include<iostream>
using namespace std;
#define MAXN 1001
int nFather[MAXN],nSize[MAXN];
void vMakeSet(int nS);
int nFindID(int nX);
void nUnion(int nA,int nB);
bool bCheck(int nS);
int main()
{
    int i,u,v,n,e;
    while(cin>>n>>e)
    {
        vMakeSet(n);
        for(i=1;i<=e;i++)
        {
            cin>>u>>v;
            nUnion(u,v);
        }
        if(bCheck(n))
        {
            cout<<"Yes"<<endl;
        }
        else
        {
            cout<<"No"<<endl;
        }
    }
    return 0;
}
void vMakeSet(int nS)
{
    int i;
    for(i=1;i<=nS;i++)
    {
        nFather[i]=i;
        nSize[i]=1;
    }
}
int nFindID(int nX)
{
    if(nFather[nX]!=nX)
    {
        nFather[nX]=nFindID(nFather[nX]);
    }
    return nFather[nX];
}
void nUnion(int nA,int nB)
{
    int nX,nY;
    nX=nFindID(nA);
    nY=nFindID(nB);
    if(nX!=nY)
    {
        if(nSize[nX]<=nSize[nY])
        {
            nFather[nX]=nY;
            nSize[nY]+=nSize[nX];
        }
        else
        {
            nFather[nY]=nX;
            nSize[nX]+=nSize[nY];
        }
    }
}
bool bCheck(int nS)
{
    int i;
    for(i=1;i<=nS;i++)
    {
        nFather[i]=nFindID(i);
        if(nFather[i]!=nFather[1])
        {
            return false;
        }
    }
    return true;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值