无向图的连通性问题(并查集)

先不要看我的整理,看一位大牛的文章,你就不用再看我写的了。
http://blog.csdn.net/dellaserss/article/details/7724401/
真的很厉害吧!用江湖来讲解一个算法,真的是绝妙的。我觉得学算法就是需要这样的生动有趣,很多人看见算法因为其专业的描述十分枯燥而变得十分头疼。如果能有生动形象的语言来描述它,就会令人兴趣大增。

它的思想就是:如果两个顶点a和b有一条路径相连,那么a的父顶点设为b,以此类推,b的父顶点c,如果连通,最后一个点的父顶点就是它本身。如果有其他顶点的父顶点是它本身,那么这样的图就不是连通的。

比如举个例子
这里写图片描述
输入边分别为:(0 , 1) , (0 , 2) , (0 , 3) , (1 , 3)
先初始化,每个点刚开始是独立为一个集合,它的父顶点就是自己。即pre[0] = 0 , pre[1] = 1 , pre[2] = 2 pre[3] = 3
接下来进行并查集:

  1. 查询0和1这两个点的父顶点,发现都为本身,返回父顶点 0和1,如果这两个父顶点不相等,则将两个集合合并,即pre[0] = 1,那么0的父节点就变成了1,这样0到1就有了一条路径。
  2. 查询0和2这两个点的父顶点,发现0的父顶点是1,而2的父顶点是本身2,则将两个集合合并,即pre[1] = 2,那么0和1的父顶点变成了2,这样1到2就有一条路径
  3. 查询0和3这两个点的父顶点,发现0的父顶点为2,而3的父顶点是本身,则将两个集合合并,即pre[2] = 3,那么0和1和2的父顶点变成了3,这样2到3就有一条路径。
  4. 查询1和3这两个点的父顶点,发现1的父顶点就是3,那么便不用合并集合了。

代码如下:

#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 1000+10;
int V,E;
int pre[maxn];

/*初始化*/ 
void init()
{
	for(int i=1; i<=V; i++)
	{
		pre[i] = i;
	}
}

/*查找根节点*/
int find(int x)
{
	int r = x;
	while(r!=pre[r])
	r = pre[r];
	
	int i = x;//路径压缩 
	int j;  
	while(i != r)
	{
		j = pre[i];
		pre[i] = r;
		i = j;
	}
	return r;
}

int main()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&V,&E);
		init();
		int s,t;
		for(int i=0;i<E;i++)
		{
			scanf("%d%d",&s,&t);
			int fx = find(s);
			int fy = find(t);
			if(fx != fy)
			{
				pre[fy] = fx;	
			} 
		}
		int ok = 0;
		for(int i=1; i<=V; i++)
		{
			if(pre[i]==i)
			{
				ok++;
			}
		}
		if(ok==1)
		printf("是连通图\n");
		else{
			printf("不是连通图\n");
		}
	}
	return 0;
}

效果图:
这里写图片描述

  • 3
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是使用 C++ 实现使用并查集找到无向图中的桥的代码: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; int n, m, tot; int head[MAXN], dfn[MAXN], low[MAXN], fa[MAXN]; bool vis[MAXN]; struct Edge { int to, nxt; } e[MAXN << 1]; void addEdge(int u, int v) { e[++tot].to = v; e[tot].nxt = head[u]; head[u] = tot; } int find(int x) { if (x == fa[x]) { return x; } return fa[x] = find(fa[x]); } void merge(int x, int y) { int fx = find(x), fy = find(y); if (fx != fy) { fa[fx] = fy; } } void tarjan(int u) { dfn[u] = low[u] = ++tot; vis[u] = true; for (int i = head[u]; i; i = e[i].nxt) { int v = e[i].to; if (!dfn[v]) { tarjan(v); low[u] = min(low[u], low[v]); if (low[v] > dfn[u]) { printf("%d %d is bridge\n", u, v); } else { merge(u, v); } } else if (vis[v]) { low[u] = min(low[u], dfn[v]); } } vis[u] = false; } int main() { scanf("%d %d", &n, &m); for (int i = 1; i <= n; i++) { fa[i] = i; } for (int i = 1; i <= m; i++) { int u, v; scanf("%d %d", &u, &v); addEdge(u, v); addEdge(v, u); } tarjan(1); return 0; } ``` 在这个代码中,我们使用了 Tarjan 算法来找到无向图中的桥。具体来说,我们使用了一个并查集来维护连通性,并使用了 DFS 遍历来查找桥。在 DFS 的过程中,我们记录了每个节点的 dfn 和 low 值,同时使用 vis 数组来判断一个节点是否已经被访问过。如果一个节点的 low 值大于其子节点的 dfn 值,则说明该节点与子节点之间的边是桥。否则,我们将该节点与子节点合并到同一个连通块中。 需要注意的是,这个算法的时间复杂度为 $O(m \alpha(n))$,其中 $m$ 为边数,$n$ 为节点数,$\alpha(n)$ 是反阿克曼函数的某个值,可以认为是一个非常小的常数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值