算法导论第四章练习

4.1练习

4.1-1

返回的是数组中最大元素的下标和值

4.1-2

public static int[] violenceFindMaximumSubarray(int[] arr) {
		int sum = Integer.MIN_VALUE; //this variable is made for the max sum of outer loop
		int tempSum = 0;    //this variable is made for temporary sum after each iteration
		int leftIndex = 0;
		int rightIndex = 0; 
		
		for(int i = 0;i < arr.length;i++) {
			tempSum = 0;
			for(int j = i;j < arr.length;j++) {
				tempSum += arr[j];
				if(tempSum > sum) {
					sum = tempSum;
					leftIndex = i;
					rightIndex = j;
				}
			}
		}
		
		return new int[] {leftIndex,rightIndex,sum};
	}

4.1-3

递归算法实现

https://blog.csdn.net/sscout/article/details/80984832

暴力算法实现在4.1-2已经实现

当n0<30时采用暴力算法,其他情况采用分治算法

修改:只需要在分治算法开始时再加上一个判断 数组的长度是否小于30,如果小于30,就调用暴力算法

不会改变性能交叉点

4.1-4

public static int[] findMaxCrossingSubarray(int[] arr,int low,int mid,int high) {
		int leftSum = 0;
		int rightSum = 0;
		int sum = 0;
		int maxLeft = mid;
		int maxRight = mid;
		
		for(int i = mid;i >= low;i--) {
			sum += arr[i];
			if(sum > leftSum) {
				leftSum = sum;
				maxLeft = i;
			}
		}
		
		sum = 0;
		for(int j = mid+1;j <= high;j++) {
			sum += arr[j];
			if(sum > rightSum) {
				rightSum = sum;
				maxRight = j;
			}
		}
		
		if(leftSum+rightSum < 0) {
			return new int[] {-1,-1,0};
		}
		return new int[] {maxLeft,maxRight,leftSum+rightSum};
	}
	
public static int[] findMaximumSubarray(int[] arr,int low,int high) {
		if(high == low) {
			if(arr[0] < 0) {
				return new int[] {-1,-1,0};
			}
			return new int[] {low,high,arr[0]};
		}else {
			int mid = (low + high)/2;
			int[] leftResult = findMaximumSubarray(arr,low,mid);
			int[] rightResult = findMaximumSubarray(arr,mid+1,high);
			int[] crossResult = findMaxCrossingSubarray(arr,low,mid,high);
			
			if(leftResult[2] >= rightResult[2] && leftResult[2] >= crossResult[2]) {
				return leftResult;
			}else if(rightResult[2] >= leftResult[2] && rightResult[2] >= crossResult[2]) {
				return rightResult;
			}else{
				return crossResult;
			}
		}
		
	}

4.1-5

public static int[] findMaximumSubarrayByMaximumSubarray(int[] arr,int low,int high) {
		int subSum = 0;
		int sum = 0;
		int leftIndex = high + 1;

		for(int i = low;i <= high;i++) {
			subSum += arr[i];
		}
		
		if(subSum + arr[high+1] < subSum) {
			return new int[] {low,high,subSum};
		}else {
			for(int j = high+1;j >= low;j--) {
				sum += arr[j];
				if(sum > subSum) {
					subSum = sum;
					leftIndex = j;
				}
			}
		}
		
		return new int[] {leftIndex,high+1,subSum};
		
		
	}

4.2练习

4.2-1

(1)分解为8个长度为1的数组

A11={1},A12={3},        B11={6},B12={8},

A21={7},A22={5},        B21={4},B22={2},

(2)计算7个p

P1=6

P2=8

P3=72

P4=-10

P5=48

P6=-12

P7=-84

(3)计算C

C11=18

C12=14

C21=62

C22=66

(4)C={{18,14},{62,66}}

4.2-2

https://blog.csdn.net/sscout/article/details/81016217

4.2-3

https://blog.csdn.net/sscout/article/details/81022864

4.2-4

所以k最大是21

T(n)= Θ(n^log3(21))

4.2-5

所以最佳运行时间是70*70的

比Strassen算法的性能好

4.2-6

(kn×n)(n×nk)矩阵相乘得到 (kn×kn)矩阵

∵其中共进行了 k²次(n×n)(n×n)矩阵相乘

∴ 所以共调用 k²次Strassen算法

∴ 耗费了Θ(k²lg7)时间

同理(n×kn)(nk×n)矩阵相乘得到 (n×n) 矩阵,调用了k次Strassen算法

∴ 耗费了Θ(klg7)时间

4.2-7

第一次乘法 (a+b)(c+d) = ac + bd + ad + bc

第二次乘法 bd

第三次乘法 ac

ac - bd

(a+b)(c+d) - bd -ac = ad + bc

4.3练习

4.3-1

4.3-2

4.3-3

4.3-4

4.3-5

4.3-6

4.3-7

4.3-8

4.3-9

4.4练习

4.4-1

4.4-2

4.4-3

4.4-4

4.4-5

4.4-6

4.4-7

4.4-8

4.4-9

4.5练习

4.5-1

a.

b.

c.

d.

4.5-2

4.5-3

4.5-4

4.5-5

4.6-1

4.6-2

4.6-3

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值