Given a set of distinct positive integers, find the largest subset such that every pair (Si, Sj) of elements in this subset satisfies: Si % Sj = 0 or Sj % Si = 0.
If there are multiple solutions, return any subset is fine.
Example 1:
nums: [1,2,3] Result: [1,2] (of course, [1,3] will also be ok)
Example 2:
nums: [1,2,4,8] Result: [1,2,4,8]
Credits:
Special thanks to @Stomach_ache for adding this problem and creating all test cases.
Subscribe to see which companies asked this question
动态规划
首先对数组进行排序,这样保证小的在前面
地推公式是
dp[i] = max{dp[j] + t[j]}, j < i
t[j] = 1, if nums[i] %nums[j]
0 ,else
然后使用ind数组,记录数组
ind[i] = j, if dp[j] is the max
class Solution(object):
def largestDivisibleSubset(self, nums):
if nums == []:
return []
nums.sort()
# print nums
dp = [1] * len(nums)
ind = [-1] * len(nums)
for i in xrange(len(nums)):
t = 1
for j in xrange(i):
if nums[i] % nums[j] == 0 and dp[j] + 1 >= t:
t = dp[j]+1
ind[i] = j
dp[i] = t
maxx = max(dp)
i = dp.index(maxx)#len(nums) - 1
res = []
while i >= 0:
res += nums[ind[i]],
i = ind[i]
return res