Scikit-learn CountVectorizer与TfidfVectorizer

本文主要介绍两个类的基本使用,CountVectorizer与TfidfVectorizer,这两个类都是特征数值计算的常见方法。对于每一个训练文本,CountVectorizer只考虑每种词汇在该训练文本中出现的频率,而TfidfVectorizer除了考量某一词汇在当前训练文本中出现的频率之外,同时关注包含这个词汇的其它训练文本数目的倒数。相比之下,训练文本的数量越多,TfidfVectorizer这种特征量化方式就更有优势。

#python2.7 sklearn version 0.18.1
from sklearn.feature_extraction.text import CountVectorizer
X_test = ['I sed about sed the lack',
'of any Actually']

count_vec=CountVectorizer(stop_words=None)
print count_vec.fit_transform(X_test).toarray()
print '\nvocabulary list:\n\n',count_vec.vocabulary_

>>
>>
[[1 0 0 1 1 0 2 1]
 [0 1 1 0 0 1 0 0]]

  (0, 4)    1
  (0, 7)    1
  (0, 0)    1
  (0, 6)    2
  (0, 3)    1
  (1, 1)    1
  (1, 2)    1
  (1, 5)    1

vocabulary list:

{u'about': 0, u'i': 3, u'of': 5, u'lack': 4, u'actually': 1, u'sed': 6, u'the': 7, u'any': 2}
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

关于上面的代码,有几点说明:
(1)第6行代码中,stop_words=None表示不去掉停用词,若改为stop_words=’english’则去掉停用词;
(2)第12,13行,分别是X_test中,两段文本的词频统计结果;
(3)第15-22行,是稀疏矩阵的表示方式;
(4)CountVectorizer同样适用于中文

# -*- coding: utf-8 -*-
from sklearn.feature_extraction.text import CountVectorizer

X_test = [u'没有 你 的 地方 都是 他乡',u'没有 你 的 旅行 都是 流浪']

count_vec=CountVectorizer(token_pattern=r"(?u)\b\w\w+\b")
print count_vec.fit_transform(X_test).toarray()
print count_vec.fit_transform(X_test)
print '\nvocabulary list:\n'
for key,value in count_vec.vocabulary_.items():
    print key,value

>>
>>
[[1 1 0 1 0 1]
 [0 0 1 1 1 1]]
  (0, 0)    1
  (0, 5)    1
  (0, 1)    1
  (0, 3)    1
  (1, 4)    1
  (1, 2)    1
  (1, 5)    1
  (1, 3)    1

vocabulary list:

他乡 0
地方 1
旅行 2
没有 3
都是 5
流浪 4
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

2.sklearn.feature_extraction.text.TfidfVectorizer

2.1 tf-idf

首先介绍一下如何计算tf-idf,并且需要明确的是tf-idf=tf*idf,也就是说tf与idf分别是两个不同的东西。其中tf为谋个训练文本中,某个词的出现次数,即词频(Term Frequency);idf为逆文档频率(Inverse Document Frequency),对于词频的权重调整系数。

其中:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值