Fire-Flyer AI-HPC:基于 PCIe 的深度学习架构优化实践

背景介绍

随着深度学习(DL)和大型语言模型(LLM)的快速发展,计算资源的需求呈指数级增长。传统的高性能计算(HPC)架构,如 NVIDIA 的 DGX-A100,虽然性能强大,但成本高昂且能耗巨大。为了应对这一挑战,Fire-Flyer AI-HPC 架构应运而生。它通过软硬件协同设计,在 PCIe A100 GPU 的基础上,实现了接近 DGX-A100 的性能,但成本仅为后者的 60%,能耗减少了 40%

PCIe 架构优化

(一)硬件设计:PCIe A100 GPU 集群

Fire-Flyer 2 架构采用了 8 个 PCIe A100 GPU 和 1 个 Mellanox CX6 200Gbps InfiniBand (IB) 网卡,直接连接到 CPU,避免使用 PCIe 交换机,从而减少了潜在的性能瓶颈。这种设计在成本和性能之间取得了平衡,同时满足了大多数深度学习模型的训练需求。

配置项 Fire-Flyer 架构 NVIDIA DGX-A100 架构
GPU 8 个 PCIe A100 8 个 SXM A100
网卡 1 个 Mellano
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值