随着人工智能模型规模的指数级增长,数据访问效率已成为制约训练和推理性能的关键瓶颈。DeepSeek 开源的 Fire-Flyer File System(简称 3FS)通过创新架构设计和硬件性能的极致利用,为分布式 AI 应用提供了革命性的存储解决方案。本文将深入探讨 3FS 的核心技术突破及其对 AI 基础设施的全局优化价值。
一、架构设计:重新定义存储范式
3FS 的核心目标是最大化现代硬件(如 SSD 和 RDMA)的潜力,同时简化开发者的使用成本。其主要架构亮点包括:
-
解耦式存储架构
通过分离元数据和服务数据层,3FS 实现了位置无关的资源访问。元数据服务基于 FoundationDB 提供强一致性和高并发支持,而数据层则整合了数千块 SSD 和数百节点的 RDMA 网络带宽,形成一个全局共享存储池。这使得计算节点无需关心数据的物理位置即可实现跨节点随机访问和并行加载。 -
CRAQ 强一致性协议
采用链式复制与分片查询机制,在确保数据完整性的前提下降低了复制延迟。这种机制在保证所有副本同步更新的同时,允许读操作分散到任意副本,从而避免全