降维算法PCA和SVD

PCA

        SVD和主成分分析PCA都属于矩阵分解算法中的入门算法,都是通过分解特征矩阵来进行降维,在降维中,PCA使用的信息量衡量指标,就是样本方差,又称可解释性方 差,方差越大,特征所带的信息量越多。

重要参数n_components

        n_components是我们降维后需要的维度,即降维后需要保留的特征数量

案例:高维数据可视化

1.调用库和模块

import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA

2.提取数据集

iris = load_iris()
y = iris.target
X = iris.data
X.shape
import pandas as pd
pd.DataFrame(X)

结果,X是四维

 3.建模

#调用PCA
pca = PCA(n_components=2) #实例化
pca = pca.fit(X) #拟合模型
X_dr = pca.transform(X) #获取新矩阵
X_dr

降维后X结果

4.可视化

plt.figure()
plt.scatter(X_dr[y==0, 0], X_dr[y==0, 1], c="red", label=iris.target_names[0])
plt.scatter(X_dr[y==1, 0], X_dr[y==1, 1], c="black", label=iris.target_names[1])
plt.scatter(X_dr[y==2, 0], X_dr[y==2, 1], c="orange", label=iris.target_names[2])
plt.legend()
plt.title('PCA of IRIS dataset')
plt.show()

 结果

6.探索降维后的数据

#属性explained_variance_,查看降维后每个新特征向量上所带的信息量大小(可解释性方差的大小)
pca.explained_variance_
#属性explained_variance_ratio,查看降维后每个新特征向量所占的信息量占原始数据总信息量的百分比
#又叫做可解释方差贡献率
pca.explained_variance_ratio_
#大部分信息都被有效地集中在了第一个特征上
pca.explained_variance_ratio_.sum()

 结果

 7. 选择最好的n_components:累积可解释方差贡献率曲线

        累积可解释方差贡献率曲线是一条以降维后保留的特征个数为横坐标,降维后新特征矩阵捕捉到的可解释方差贡献 率为纵坐标的曲线,能够帮助我们决定n_components最好的取值。

plt.plot([1,2,3,4],np.cumsum(pca_line.explained_variance_ratio_))
plt.xticks([1,2,3,4]) #这是为了限制坐标轴显示为整数
plt.xlabel("number of components after dimension reduction")
plt.ylabel("cumulative explained variance ratio")
plt.show()

 SVD

        SVD就是奇异值分解的意思,奇异值分解可以不计算协方差矩阵等等结构复杂计算冗长的矩阵,就直接求出新特 征空间和降维后的特征矩阵。

重要属性components_

案例:人脸识别中属性 Tsai Tsai components_的运用。

1.导入需要的库和模块

from sklearn.datasets import fetch_lfw_people
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import numpy as np

2. 实例化数据集,探索数据

faces = fetch_lfw_people(min_faces_per_person=60)
faces.images.shape
faces.data.shape
X = faces.data

结果

3.将原特征矩阵进行可视化 

#创建画布和子图对象
fig, axes = plt.subplots(4,5
                       ,figsize=(8,4)
                       ,subplot_kw = {"xticks":[],"yticks":[]} #不要显示坐标轴
                       )

for i, ax in enumerate(axes.flat):
    ax.imshow(faces.images[i,:,:] 
             ,cmap="gray" #选择色彩的模式
             )

结果

 4.. 建模降维,提取新特征空间矩阵

pca = PCA(150).fit(X)
V = pca.components_
V.shape

结果 降到150维 

5.. 将新特征空间矩阵可视化

fig, axes = plt.subplots(3,8,figsize=(8,4),subplot_kw = {"xticks":[],"yticks":[]})
for i, ax in enumerate(axes.flat):
    ax.imshow(V[i,:].reshape(62,47),cmap="gray")

结果

 重要接口inverse_transform

inverse_transform,可以将我们归一化,标准化,甚至做过哑变 量的特征矩阵还原回原始数据中的特征矩阵,但是在降维过程中是不可逆的

ig, ax = plt.subplots(2,10,figsize=(10,2.5)
                     ,subplot_kw={"xticks":[],"yticks":[]}
                     )
#和2.3.3节中的案例一样,我们需要对子图对象进行遍历的循环,来将图像填入子图中
#那在这里,我们使用怎样的循环?
#现在我们的ax中是2行10列,第一行是原数据,第二行是inverse_transform后返回的数据
#所以我们需要同时循环两份数据,即一次循环画一列上的两张图,而不是把ax拉平
for i in range(10):
    ax[0,i].imshow(faces.images[i,:,:],cmap="binary_r")
    ax[1,i].imshow(X_inverse[i].reshape(62,47),cmap="binary_r")

结果:inverse_transfrom后部分信息已经被舍弃 不是原来100%的信息

 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值