Description
在一个标准8*8的国际象棋棋盘上,棋盘中有些格子可能是有障碍物的。已知骑士的初始位置和目标位置,你的任务是计算骑士最少需要多少步可以从初始位置到达目标位置。有障碍物的格子当然不可以到达。
标准的8*8的国际象棋中每一个格子可以用唯一的编号确定。行用1-8这8个数字依次表示,列用’a’-’h’这8个字母依次表示。例如左下图的骑士所在位置(图中有n的格子)的编号为“d4”(注意‘d’和‘4’之间没有空格)。
我们知道国际象棋中的骑士可以按“L”路线移动(一个方向走2个格子,接着垂直方向走1个格子)。因此,如左上图中的骑士(位于d4),可以到达位置c2,b3,b5,c6,e6,f5,f3,e2(图中有‘x’标记的格子)。此外,骑士不能够移出棋盘。
骑士可以按照移动规则自由地在棋盘上没有障碍物的格子中移动。右上图给出了一个骑士移动的例子。初始格子用‘n’标记,目标格子用‘N’标记,有障碍物的格子用‘b’标记。一个可行的移动序列在图中用数字标记出来。(a1,b3,a5,c6,e5,g4,h2,f1)。总共需要7步才能完成。事实上,这也就是最小的步数了。
Input
输入文件包括1个或多个测试数据。
每一个测试数据的第一行是一个整数b(-1<=b<=62),表示棋盘中有障碍物的格子数目,当b=-1时,输入文件结束。
第二行含b个不同的障碍物的格子编号,用空格隔开。当b=0时,此行为空行。
第三行是骑士的初始格子和目标格子的编号,也是用空格隔开。初始格子和目标格子是不同的,且都没有障碍物。
Output
对于每个数据,输出一行。格式:Board n: m moves,其中n表示数据的序号(从1开始)m表示骑士所用的最小的步数。
如果骑士无法到达目标格子,输出:Board n: not reachable
Sample Input
10
c1 d1 d5 c2 c3 c4 d2 d3 d4 c5
a1 f1
0
c1 b3
2
b3 c2
a1 b2
-1
Sample Output
Board 1: 7 moves
Board 2: 1 moves
Board 3: not reachable