2127. 【GDOI2003】骑士问题 (Standard IO)

解决国际象棋棋盘上骑士从初始位置到目标位置的最少步数问题,考虑障碍物并确保不移出棋盘。提供输入输出示例及解题条件。
摘要由CSDN通过智能技术生成

Description

  在一个标准8*8的国际象棋棋盘上,棋盘中有些格子可能是有障碍物的。已知骑士的初始位置和目标位置,你的任务是计算骑士最少需要多少步可以从初始位置到达目标位置。有障碍物的格子当然不可以到达。
  标准的8*8的国际象棋中每一个格子可以用唯一的编号确定。行用1-8这8个数字依次表示,列用’a’-’h’这8个字母依次表示。例如左下图的骑士所在位置(图中有n的格子)的编号为“d4”(注意‘d’和‘4’之间没有空格)。   
  我们知道国际象棋中的骑士可以按“L”路线移动(一个方向走2个格子,接着垂直方向走1个格子)。因此,如左上图中的骑士(位于d4),可以到达位置c2,b3,b5,c6,e6,f5,f3,e2(图中有‘x’标记的格子)。此外,骑士不能够移出棋盘。
  骑士可以按照移动规则自由地在棋盘上没有障碍物的格子中移动。右上图给出了一个骑士移动的例子。初始格子用‘n’标记,目标格子用‘N’标记,有障碍物的格子用‘b’标记。一个可行的移动序列在图中用数字标记出来。(a1,b3,a5,c6,e5,g4,h2,f1)。总共需要7步才能完成。事实上,这也就是最小的步数了。

Input

  输入文件包括1个或多个测试数据。
  每一个测试数据的第一行是一个整数b(-1<=b<=62),表示棋盘中有障碍物的格子数目,当b=-1时,输入文件结束。
  第二行含b个不同的障碍物的格子编号,用空格隔开。当b=0时,此行为空行。
  第三行是骑士的初始格子和目标格子的编号,也是用空格隔开。初始格子和目标格子是不同的,且都没有障碍物。

Output

  对于每个数据,输出一行。格式:Board n: m moves,其中n表示数据的序号(从1开始)m表示骑士所用的最小的步数。
  如果骑士无法到达目标格子,输出:Board n: not reachable

Sample Input

10
c1 d1 d5 c2 c3 c4 d2 d3 d4 c5
a1 f1
0

c1 b3
2
b3 c2
a1 b2
-1

Sample Output

Board 1: 7 moves
Board 2: 1 moves
Board 3: not reachable

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值