椭圆
一堆定义
第一定义:
平面内与两定点
F
1
,
F
2
F_1,F_2
F1,F2的距离的和等于常数
2
a
(
2
a
≥
∣
F
1
F
2
∣
)
2a(2a \geq |F_1F_2|)
2a(2a≥∣F1F2∣)的动点P的轨迹叫做椭圆。
其中两定点
F
1
,
F
2
F_1,F_2
F1,F2叫做椭圆的焦点,两焦点的距离
∣
F
1
F
2
∣
=
2
c
≤
2
a
|F_1F_2|=2c≤2a
∣F1F2∣=2c≤2a叫做椭圆的焦距。
P为椭圆的动点。
第二定义:
椭圆平面内到定点 F ( c , 0 ) F(c,0) F(c,0)的距离与到定直线 l : x = a 2 c ( F 不 在 l 上 ) l:x=\frac{a^2}{c}(F不在l上) l:x=ca2(F不在l上)的距离之比为常数从C/A,(即离心率,0<e<1)的点的轨迹是椭圆。
第三定义:
平面内的动点到两定点A1(a,0)、A2(-a,0)的斜率乘积,等于常数 e²-1的点的轨迹,叫做椭圆或双曲线,其中两定点分别为椭圆或双曲线的顶点;当常数大于-1小于0时为椭圆;当常数大于0时为双曲线。
焦点三角形
记
F
1
F_1
F1为左焦点,
F
2
F_2
F2为右焦点,
P
P
P为椭圆上异于左右顶点的点。
记
∣
P
F
1
∣
=
m
,
∣
P
F
2
∣
=
n
|PF_1|=m,|PF_2|=n
∣PF1∣=m,∣PF2∣=n
{ m + n = 2 a m 2 + n 2 − ( 2 c ) 2 2 m n = cos θ \left\{\begin{matrix} m+n=2a\\ \frac{m^2+n^2-(2c)^2}{2mn}=\cos \theta \end{matrix}\right. {m+n=2a2mnm2+n2−(2c)2=cosθ
m n = 2 b 2 1 + cos θ mn=\frac{2b^2}{1+\cos \theta} mn=1+cosθ2b2
S △ P F 1 F 2 = 1 2 ∣ P F 1 ∣ ∣ P F 2 ∣ sin θ = 1 2 m n sin θ = b 2 sin θ cos θ + 1 = b 2 2 sin θ 2 cos θ 2 2 cos 2 θ 2 − 1 + 1 = b 2 tan θ 2 S_{\triangle PF_1F_2}=\frac{1}{2}|PF_1||PF_2|\sin \theta=\frac{1}{2}mn\sin\theta=b^2\frac{\sin\theta}{\cos\theta+1}=b^2\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}-1+1}=b^2\tan\frac{\theta}{2} S△PF1F2=21∣PF1∣∣PF2∣sinθ=21mnsinθ=b2cosθ+1sinθ=b22cos22θ−1+12sin2θcos2θ=b2tan2θ
双曲线
<|F1F2|
焦点三角形
记
F
1
F_1
F1为左焦点,
F
2
F_2
F2为右焦点,
P
P
P为椭圆上异于左右顶点的点。
记
∣
P
F
1
∣
=
m
,
∣
P
F
2
∣
=
n
|PF_1|=m,|PF_2|=n
∣PF1∣=m,∣PF2∣=n
{ ∣ m − n ∣ = 2 a m 2 + n 2 − ( 2 c ) 2 2 m n = cos θ \left\{\begin{matrix} |m-n|=2a\\ \frac{m^2+n^2-(2c)^2}{2mn}=\cos \theta \end{matrix}\right. {∣m−n∣=2a2mnm2+n2−(2c)2=cosθ
m
n
=
2
b
2
1
−
cos
θ
mn=\frac{2b^2}{1-\cos\theta}
mn=1−cosθ2b2
S
△
P
F
1
F
2
=
1
2
∣
P
F
1
∣
∣
P
F
2
∣
sin
θ
=
1
2
m
n
sin
θ
=
b
2
sin
θ
1
−
cos
θ
=
b
2
2
sin
θ
2
cos
θ
2
1
−
(
1
−
2
sin
2
θ
2
)
=
b
2
tan
θ
2
S_{\triangle PF_1F_2}=\frac{1}{2}|PF_1||PF_2|\sin \theta=\frac{1}{2}mn\sin\theta=b^2\frac{\sin\theta}{1 - \cos\theta}=b^2\frac{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{1-(1-2\sin^2\frac{\theta}{2})}=\frac{b^2}{\tan\frac{\theta}{2}}
S△PF1F2=21∣PF1∣∣PF2∣sinθ=21mnsinθ=b21−cosθsinθ=b21−(1−2sin22θ)2sin2θcos2θ=tan2θb2