jzoj 3885 搞笑的代码

本文探讨了一种生成排列的方法,并给出了计算生成特定长度排列所需的期望随机次数的算法。介绍了如何通过递推式求解小规模问题,以及利用调和级数与自然对数的关系估算大规模问题。

Description

在OI界存在着一位传奇选手——QQ,他总是以风格迥异的搞笑代码受世人围观
某次某道题目的输入是一个排列,他使用了以下伪代码来生成数据
while 序列长度<n do
{
随机生成一个整数属亍[1,n]
如果这个数没有出现过则加入序列尾
}
聪明的同学一定发现了,这样生成数据是很慢的,那么请你告诉QQ,生成一个n排列的期望随机次数

Input

一个正整数n,表示需要生成一个n排列

Output

一个数表示期望随机次数,保留整数

Sample Input

4

Sample Output

8(.333333…)

【友情提示】

输出样例的括号里表示答案的小数部分,但实际丌要求输出
数学期望=sigma(概率*权值),本题中为期望随机次数=sigma(概率*随机次数)

Data Constraint

30%数据满足n≤3
80%数据满足n≤10^7
100%数据满足n≤2^31

解题思路

定义 Fi 表示序列长度为 i 时的期望随机次数,不难根据题目的定义列出递推式,
F(i)=i/n*(F(i)+1)+(n-i)/n*(F(i-1)+1),解得  F(i)=F(i-1)+n/(n-i)
所以答案为 sigma(n/1+n/2+n/3…+n/n)
这样就可以得到80分。
实际上 1/1+1/2+1/3+…+1/n 为经典的调和级数,当 n 很大的时候,调和级数与自然对数的差约等于欧拉常数,不过 n 较小的时候误差较大
所以当 n 小的时候 O(n)计算该式,当 n 较大的时候,用 ln(n)+欧拉常数近似代替调和级数,但是因为最后答案还乘了 n,所以误差变大,只能精确到整数位。

Source Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iomanip>
using namespace std;

const int N=10000000;

int n;

void bl()
{
    double m=n;
    double ans;
    for (double i=1.0;i<=n;i++)
      ans+=n/i;
    long long s=floor(ans+0.50);
    cout<<s<<endl;
}

void el()
{
    double c=0.57721566490153286060651209;
    double ans=log(n)+c;
    ans*=n;
    long long s=floor(ans+0.50);
    cout<<s<<endl;
}

int main()
{
    scanf("%d",&n);
    if (n<=N) bl();
      else el();
}
内容概要:本文详细介绍了一个基于MATLAB实现的RF-XGBoost混合集成模型,用于多特征分类预测的完整项目。该项目融合随机森林(RF)和极端梯度提升(XGBoost)两种算法的优势,构建了多层混合集成架构,涵盖数据预处理、特征筛选、降维、模型训练、调优、评估与可视化全流程。通过RF进行特征重要性分析和初步筛选,结合PCA降维后输入XGBoost进行精细建模,有效提升了高维、多类别数据的分类准确率与模型泛化能力。项目包含完整的代码实现、GUI界面设计、系统部署方案及未来优化方向,强调可解释性、工程化架构与实际应用落地。; 适合人群:具备一定机器学习基础和MATLAB编程经验的数据科学从业者、高校研究生、算法工程师及希望将AI模型应用于医疗、金融、制造等实际场景的技术人员。; 使用场景及目标:①解决高维多特征数据下的分类难题,如疾病诊断、金融风控、质量检测等;②学习如何结合RF与XGBoost构建高性能集成模型;③掌握从数据预处理到模型部署的全流程开发方法;④构建可解释、可扩展、具备GUI交互的企业级预测分析平台。; 阅读建议:建议读者结合文档中的代码逐模块运行与调试,重点理解RF特征筛选与XGBoost建模的衔接逻辑,关注参数调优、过拟合防控与多指标评估策略。同时可基于提供的GUI框架进行功能扩展,深入体会工程化系统的设计思路与实际部署要点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值