P3811 【模板】乘法逆元


原题链接

P3811
AC记录:Accepted

题目大意

给定 n , p n,p n,p 1 ⋯ n 1\cdots n 1n中所有整数在模 p p p意义下的乘法逆元。

输入格式

一行两个正整数 n , p n,p n,p

输出格式

输出 n n n行,第 i i i行表示 i i i在模 p p p下的乘法逆元。

S a m p l e \mathbf{Sample} Sample I n p u t \mathbf{Input} Input

10 13

S a m p l e \mathbf{Sample} Sample O u t p u t \mathbf{Output} Output

1
7
9
10
8
11
2
5
3
4

H i n t & E x p l a i n \mathbf{Hint\&Explain} Hint&Explain
对于 3 3 3来说,他在模 13 13 13意义下的乘法逆元为 9 9 9,因为 9 9 9是最小的一个正整数解使得方程 3 x ≡ 1 ( m o d 13 ) 3x\equiv 1\pmod{13} 3x1(mod13)成立。

数据范围

对于 100 % 100\% 100%的数据, 1 ≤ n ≤ 3 × 1 0 6 , n < p < 20000528 1≤n≤3\times 10^6,n<p<20000528 1n3×106,n<p<20000528
输入保证 p p p为素数。

解题思路

⚠  警告 此题时间限制仅有500ms! { \color{#FF9100}{\rule[0pt]{2pt}{40pt}} \color{#FFF4E5}{\rule[20pt]{200pt}{20pt}} \kern{-200pt} \color{#FFFFFF}{\rule[0pt]{200pt}{20pt}} \color{orange}{\raisebox{27pt}{\kern{-195pt}{\footnotesize\bf ⚠ 警告}}} \color{black}{\raisebox{7pt}{\kern{-195pt}{\footnotesize\bf 此题时间限制仅有500ms!}}} }  500ms!

由于这恐怖的时限,所以作者这里用的是线性求逆元的方法。

定义

a a a p p p互质时,使得方程 a x ≡ 1 ( m o d p ) ax\equiv 1\pmod p ax1(modp)成立的最小正整数解称为 a a a在模 p p p意义下的乘法逆元,记为 a − 1 a^{-1} a1

解法

p = k a + r p=ka+r p=ka+r,其中 r = p   m o d   a , k = ⌊ p a ⌋ r=p\bmod a,k=\left\lfloor\frac{p}{a}\right\rfloor r=pmoda,k=ap
则可以列出一个方程:
k a + r ≡ 0 ( m o d p ) ka+r\equiv 0\pmod p ka+r0(modp)
两边同时乘上 a − 1 × r − 1 a^{-1}\times r^{-1} a1×r1,得
k r − 1 + a − 1 ≡ 0 ( m o d p ) kr^{-1}+a^{-1}\equiv 0\pmod p kr1+a10(modp)
移项,得
a − 1 ≡ − k r − 1 ( m o d p ) a^{-1}\equiv -kr^{-1}\pmod p a1kr1(modp)
代入 r = p   m o d   a , k = ⌊ p a ⌋ r=p\bmod a,k=\left\lfloor\frac{p}{a}\right\rfloor r=pmoda,k=ap,得
a − 1 ≡ − ⌊ p a ⌋ ⋅ ( p   m o d   a ) − 1 a^{-1}\equiv -\left\lfloor\frac{p}{a}\right\rfloor\cdot(p\bmod a)^{-1} a1ap(pmoda)1
i i i的乘法逆元为 i n v i inv_i invi,代入原式得
a − 1 ≡ − ⌊ p a ⌋ ⋅ i n v p   m o d   a a^{-1}\equiv -\left\lfloor\frac{p}{a}\right\rfloor\cdot inv_{p\bmod a} a1apinvpmoda
由于 p   m o d   a p\bmod a pmoda一定是小于 a a a的,所以 i n v p   m o d   a inv_{p\bmod a} invpmoda也一定会在 i n v a inv_a inva之前出现,直接遍历一遍就可以了。

上代码

#include<cstdio>

using namespace std;

long long   n,p;
long long   inv[3000010];

int main()
{
    scanf("%d%d",&n,&p);
    inv[0]=0;
    inv[1]=1;
    printf("1\n");
    for(int i=2; i<=n; i++)
    {
        inv[i]=(long long)p-(p/i)*inv[p%i]%p;
        printf("%d\n",inv[i]);
    }
    return 0;
}

完美切题 ∼ \sim

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值