【洛谷】P3811 【模板】乘法逆元

题目地址:

https://www.luogu.com.cn/problem/P3811

题目描述:
给定 n , p n,p n,p 1 ∼ n 1\sim n 1n中所有整数在模 p p p意义下的乘法逆元。这里 a a a p p p的乘法逆元定义为 a x ≡ 1 ( m o d p ) ax\equiv1\pmod p ax1(modp)的解。

输入格式:
一行两个正整数 n , p n,p n,p

输出格式:
输出 n n n行,第 i i i行表示 i i i在模 p p p下的乘法逆元。

数据范围:
1 ≤ n ≤ 3 × 1 0 6 , n < p < 20000528 1 \leq n \leq 3 \times 10 ^ 6, n < p < 20000528 1n3×106,n<p<20000528
输入保证 p p p为质数。

单个数求模某个素数的逆元可以用费马小定理转化为快速幂来求。本题要求 1 ∼ n 1\sim n 1n每个数的模 p p p逆元,这么做时间是 O ( n log ⁡ n ) O(n\log n) O(nlogn)会超时,从而需要别的办法。设 f [ i ] f[i] f[i] i i i p p p的逆元,则 f [ 1 ] = 1 f[1]=1 f[1]=1。考虑 f [ x ] , x > 1 f[x],x>1 f[x],x>1,设 p = k x + b , k = ⌊ p x ⌋ p=kx+b,k=\lfloor \frac{p}{x}\rfloor p=kx+b,k=xp,那么 k x + b ≡ 0 ( m o d    p ) kx+b\equiv 0(\mod p) kx+b0(modp)由于 p p p是素数,所以 k b − 1 + x − 1 ≡ 0 ( m o d    p ) x − 1 ≡ − ⌊ p x ⌋ b − 1 ≡ ( p − ⌊ p x ⌋ ) ( p m o d    x ) − 1 ( m o d    p ) kb^{-1}+x^{-1}\equiv 0(\mod p)\\x^{-1}\equiv -\lfloor \frac{p}{x}\rfloor b^{-1}\equiv (p-\lfloor\frac{p}{x}\rfloor) (p\mod x)^{-1} (\mod p) kb1+x10(modp)x1xpb1(pxp)(pmodx)1(modp) p m o d    x < x p\mod x<x pmodx<x,所以有 f [ x ] = ( p − ⌊ p x ⌋ ) f [ p m o d    x ] f[x]=(p-\lfloor\frac{p}{x}\rfloor)f[p\mod x] f[x]=(pxp)f[pmodx]从而可以递推。代码如下:

#include <iostream>
using namespace std;

const int N = 3e6 + 10;
long inv[N];

int main() {
  int n, p;
  scanf("%d%d", &n, &p);
  inv[1] = 1;
  puts("1");
  for (int i = 2; i <= n; i++)
    printf("%ld\n", inv[i] = (long)p - (p / i) * inv[p % i] % p);
}

时空复杂度 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值