论文总结2:分数阶傅里叶变换在信号检测与图像处理中的应用研究

本文介绍了分数阶傅里叶变换(FRFT)的发展历史及其特性,强调其在图像分析中的应用,特别是在图像增强领域的优势。通过分析分数域中的图像能量分布、幅度和相位信息,FRFT能够有效提高图像质量和边缘清晰度,提供更丰富的时频信息。
摘要由CSDN通过智能技术生成

分数阶傅里叶变换在信号检测与图像处理中的应用研究(李琼)

文章地址:paper
摘要:分数阶傅里叶变换是传统傅里叶变换的一种广义形式,很适合处理非平稳信号,尤其是chirp类信号,具有良好的时频域特性。通过对分数域中的图像能量和幅度相位分布的分析,将其应用到图像增强中,有效的提高图像的质量。

发展历史

  • Wiener等人最早开始研究分数阶傅里叶变换,他对傅里叶变换中的特征值进行了修正,从而使得其比普通傅里叶变换具有更加完善的形式,是分数阶傅里叶变换的最初理论。
  • 1937年, Condon 独自研究了分数阶傅里叶变换的基本概念,同时也是第一个直接研究FRFT定义的人;
  • 1961年,Bargmann讨论了FRFT的基本定义,并提出FRFT的两种等价的定义形式:Hermit多项式和积分变换;
  • 1980年,Namias从特征值域特征函数的角度,重新给出了FRFT的定义,并把FRFT定义为传统傅里叶变换的分数幂形式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值